Download this PDF file Fullscreen Fullscreen Off
References
- L. V. Ahlfors (1973). Conformal Invariants, Topics in Geometric Function Theory McGraw-Hill Math. Review 50:10211
- R. Bass (1995). Probabilistic Techniques in Analysis Springer-Verlag Math. Review 96e:60001
- P. Berg and J. McGregor (1966). Elementary Partial Differential Equations Holden-Day Math. Review 34:1652
- X. Bressaud, R. Fernandez, A. Galves (1999). Decay of correlations for non-Holderian dynamics: a coupling approach Electron. J. Probab. 4 , paper no. 3
- B. Duplantier (1999). Two-dimensional copolymers and exact conformal multifractality, Phys. Rev. Lett. 82, 880--883.
- G. F. Lawler (1995). Hausdorff dimension of cut points for Brownian motion, Electron. J. Probab. 1, paper no.2. Math. Review 97g:60111
- G. F. Lawler (1996). The dimension of the frontier of planar Brownian motion, Electron. Comm. Prob. 1, paper no 5. Math. Review 97g:60110
- G. F. Lawler (1997). The frontier of a Brownian path is multifractal, preprint.
- G. F. Lawler (1998). Strict concavity of the intersection exponent for Brownian motion in two and three dimensions, Math. Phys. Electron. J. 4, paper no. 5 Math. Review 2000e:60134
- G. F. Lawler, W. Werner (1999). Intersection exponents for planar Brownian motion, Ann. Probab. 27, 1601--1642.
- G. F. Lawler, W. Werner (1999). Universality for conformally invariant intersection exponents, preprint.

This work is licensed under a Creative Commons Attribution 3.0 License.