Download this PDF file Fullscreen Fullscreen Off
References
- S.Albeverio, J.E.Fenstad, R.H¯egh-Krohn, and T.Lindstr¯m, Nonstandard methods in stochastic analysis and mathematical physics, Academic Press, Orlando, 1986.
- N.H.Bingham and R.Kiesel, Risk-neutral valuation: Pricing and hedging of financial derivatives, Springer-Verlag, London, 1998. Math.Review2000a:91057
- N.J.Cutland, P.E.Kopp, and W.Willinger, A nonstandard approach to option pricing, Mathematical Finance 1 (1991), no.4, 1-38.
- N.J.Cutland, P.E.Kopp, and W.Willinger, From discrete to continuous financial models: New convergence results for option pricing, Mathematical Finance 3 (1993), no.2, 101-123.
- N.J.Cutland, P.E.Kopp, and W.Willinger, A nonstandard treatment of options driven by Poisson processes, Stochastics and Stochastics Reports 42 (1993), 115-133. Math. Review 95a:90009
- N.J.Cutland, P.E.Kopp, and W.Willinger, From discrete to continuous stochastic calculus, Stochastics and Stochastics Reports 52 (1995), no.3+4, 173-192. Math. Review 97d:60093
- L.Clewlow and C.Strickland, Implementing derivatives models, John Wiley & Sons, 1998.
- N.J.Cutland, Infinitesimals in action, Journal of the London Mathematical Society 35 (1987), 202-216. Math.Review88d:26045
- N.J.Cutland, Loeb measures in practice: Recent advances, EMS Lectures 1997, Springer-Verlag, 2000.
- D.Duffie and P.Protter, From discrete- to continuous-time finance: Weak convergence of the financial gain process, Mathematical Finance 2 (1992), 1-15.
- R.J.Elliott, Stochastic calculus and applications, Springer-Verlag, New York, 1982. Math. Review 85b:60059
- H.FËllmer and M.Schweizer, Hedging of contingent claims under incomplete information, Applied Stochastic Analysis (M.H.A. Davis and R.J. Elliott, eds.), Gordon and Breach, London, 1991, pp.389-414. Math.Review92g:90029
- D.N.Hoover and E.Perkins, Nonstandard construction of the stochastic integral and applications to stochastic differential equations. I+II, Transactions of the American Mathematical Society 275 (1983), no.1, 1-58. Math.Review85d:60111
- A.Jakubowski, J.MÃmin, and G.Pages, Convergence en loi des suites d'intÃgrales stochastiques sur l'espace D1 de Skohorod, Probability Theory and Related Fields 81 (1989), 111-137. Math.Review90e:60065
- M.Musiela and M.Rutkowski, Martingale methods in financial modelling, Springer-Verlag, New York, 1997. Math.Review98i:90014
- P.Monat and C.Stricker, FËllmer-Schweizer decomposition and mean-variance hedging for general claims, Annals of Probability 23 (1995), 605-628. Math. Review 97m:60065
- F.Mercurio and T.C.F.Vorst, Option pricing with hedging at fixed trading dates, Applied Mathematical Finance 3 (1996), no.2, 135-158.
- J.L. Prigent, Incomplete markets: Convergence of option values under the minimal martingale measure, THEMA preprint no.9735, Università de Cergy-Pontoise, November 1997, forthcoming in Advances in Applied Probability.
- W.J.Runggaldier and M.Schweizer, Convergence of option values under incompleteness, Seminar on Stochastic Analysis, Random Fields and Applications (E.Bolthausen, M.Dozzi, and F.Russo, eds.), Birkhâ°user Verlag, 1995, pp.365-384. Math. Review 97j:60092
- M.Schweizer, Hedging of options in a general semimartingale model, PhD thesis, ETH Z¸rich, 1988.
- M.Schweizer, Risk-minimality and orthogonality of martingales, Stochastics and Stochastics Reports 30 (1990), 123-131.
- M.Schweizer, Option hedging for semimartingales, Stochastic Processes and their Applications 37 (1991), 339-363. Math.Review92c:90025
- M.Schweizer, Variance-optimal hedging in discrete time, Mathematics of Operations Research 20 (1993), 1-32.
- M.Schâ°l, On quadratic cost criteria for option hedging, Mathematics of Operations Research 19 (1994), 121-131.
- M.Schweizer, Approximating random variables by stochastic integrals, Annals of Probability 22 (1994), no.3, 1536-1575.
- M.S.Taqqu and W.Willinger, The analysis of finite security markets using martingales, Advances in Applied Probability 18 (1987), 1-25. Math.Review88c:90032
- V.Wellmann, Convergence in incomplete market models, PhD thesis, University of Hull, 1998, http://www.wellmann.clara.net.

This work is licensed under a Creative Commons Attribution 3.0 License.