Download this PDF file Fullscreen Fullscreen Off
References
- D. Bertacchi. Asymptotic behaviour of the simple random walk on the 2-dimensional comb. Electron. J. Probab. 11 (2006), 1184-1203. MR2268542 (2007m:60210)
- D. Bertacchi and F. Zucca. Uniform asymptotic estimates of transition probabilities on combs. J. Aust. Math. Soc. 75 (2003), 325-353. MR2015321 (2004i:60103)
- J. Bertoin. Iterated Brownian motion and stable $(\frac14)$ subordinator. Statist. Probab. Lett. 27 (1996), 111-114. MR1399993 (97e:60134)
- A.N. Borodin. On the character of convergence to Brownian local time I. Probab. Theory Related Fields 72 (1986), 231-250. MR0836277 (87i:60087)
- A.N. Borodin and P. Salminen. Handbook of Brownian Motion---Facts and Formulae, 2nd ed. Birkhäuser Verlag, Basel, 2002. MR1912205 (2003g:60001)
- K.L. Chung. On the maximum partial sums of sequences of independent random variables. Trans. Amer. Math. Soc. 64 (1948), 205-233. MR0026274 (10,132b)
- E. Csáki, M. Csörgõ, A. Földes and P. Révész. Brownian local time approximated by a Wiener sheet. Ann. Probab. 17 (1989), 516-537. MR0985376 (90b:60102)
- E. Csáki, M. Csörgõ, A. Földes and P. Révész. Strong approximation of additive functionals. J. Theoret. Probab. 5 (1992), 679-706. MR1182676 (93k:60073)
- E. Csáki, M. Csörgõ, A. Földes and P. Révész. Global Strassen-type theorems for iterated Brownian motion. Stochastic Process. Appl. 59 (1995), 321-341. MR1357659 (97a:60111)
- E. Csáki and A. Földes. How big are the increments of the local time of a recurrent random walk? Z. Wahrsch. verw. Gebiete 65 (1983), 307-322. MR0722134 (85b:60027)
- E. Csáki, A. Földes and P. Révész. Strassen theorems for a class of iterated Processes. Trans. Amer. Math. Soc. 349 (1997), 1153-1167. MR1373631 (97f:60174)
- M. Csörgõ, and P. Révész. {Strong Approximations in Probability and Statistics. Academic Press, New York, 1981. MR0666546 (84d:60050)
- R.L. Dobrushin. Two limit theorems for the simplest random walk on a line (in Russian). Uspehi Mat. Nauk (N.S.) 10 (1955), 139-146. MR0071662 (17,166b)
- W.M. Hirsch. A strong law for the maximum cumulative sum of independent random variables. Comm. Pure Appl. Math. 18 (1965), 109-127. MR0179828 (31 #4069)
- N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes, 2nd ed. North-Holland, Amsterdam, 1989. MR1011252 (90m:60069)
- Y. Kasahara. Limit theorems for Lévy processes and Poisson point processes and their applications to Brownian excursions. J. Math. Kyoto Univ. 24 (1984), 521-538. MR0766640 (86i:60091)
- M. Krishnapur and Y. Peres. Recurrent graphs where two independent random walks collide finitely often. Electron. Comm. Probab. 9 (2004), 72-81. MR2081461 (2005h:60017)
- P. Lévy. Processus stochastiques et mouvement Brownien, 2nd ed. Gauthier-Villars, Paris, 1965. MR0190953 (32 #8363)
- E. Nane. Laws of the iterated logarithm for a class of iterated processes. Statist. Probab. Lett. 79 (2009), 1744-1751. Math. Review number not available.
- G. C. Papanicolaou, D. W. Stroock and S. R. S. Varadhan. Martingale approach to some limit theorems. Duke Univ. Maths. Series III. Statistical Mechanics and Dynamical System, 1977. MR0461684 (57 #1669)
- P. Révész. Local time and invariance. Lecture Notes in Math. 861 (1981), 128-145. Springer, New York. MR0655268 (83j:60034)
- P. Révész. Random Walk in Random and Non-Random Environments, 2nd ed. World Scientific, Singapore 2005. MR2168855 (2006e:60003)
- F. Riesz and B. Sz.-Nagy. Functional Analysis. Frederick Ungar, New York, 1955. MR0071727 (17,175i)
- Z. Shi. Liminf behaviours of the windings and Lévy's stochastic areas of planar Brownian motion. S\'eminaire de Probabilit\'es, XXVIII, Lecture Notes in Math. 1583 (1994), 122-137. MR1329108 (96e:60148)
- V. Strassen. An invariance principle for the law of the iterated logarithm. Z. Wahrsch. verw. Gebiete 3 (1964), 211-226. MR0175194 (30 #5379)
- G. H. Weiss and S. Havlin. Some properties of a random walk on a comb structure. Physica A 134 (1986), 474-482. Math. Review number not available.

This work is licensed under a Creative Commons Attribution 3.0 License.