Local Time Rough Path for Lévy Processes

Chunrong Feng (Shanghai Jiaotong University)
Huaizhong Zhao (Loughborough University)

Abstract


In this paper, we will prove that the local time of a Lévy process is a rough path of roughness $p$ a.s. for any $2 < p < 3$ under some condition for the Lévy measure. This is a new class of rough path processes. Then for any function $g$ of finite $q$-variation ($1\leq q <3$), we establish the integral $\int _{-\infty}^{\infty}g(x)dL_t^x$ as a Young integral when $1\leq q<2$ and a Lyons' rough path integral when $2\leq q<3$. We therefore apply these path integrals to extend the Tanaka-Meyer formula for a continuous function $f$ if $f^\prime_{-}$ exists and is of finite $q$-variation when $1\leq q<3$, for both continuous semi-martingales and a class of Lévy processes.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 452-483

Publication Date: April 29, 2010

DOI: 10.1214/EJP.v15-770

References

  1. Applebaum, David. Lévy processes and stochastic calculus.Second edition.Cambridge Studies in Advanced Mathematics, 116. Cambridge University Press, Cambridge, 2009. xxx+460 pp. ISBN: 978-0-521-73865-1 MR2512800
  2. Barlow, M. T. Necessary and sufficient conditions for the continuity of local time of Lévy processes. Ann. Probab. 16 (1988), no. 4, 1389--1427. MR0958195 (89k:60114)
  3. Bouleau, Nicolas; Yor, Marc. Sur la variation quadratique des temps locaux de certaines semimartingales.(French) C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 9, 491--494. MR0612544 (82d:60143)
  4. Boylan, Edward S. Local times for a class of Markoff processes. Illinois J. Math. 8 1964 19--39. MR0158434 (28 #1657)
  5. Eisenbaum, Nathalie. Integration with respect to local time. Potential Anal. 13 (2000), no. 4, 303--328. MR1804175 (2002e:60085)
  6. Eisenbaum, Nathalie. Local time-space stochastic calculus for Lévy processes. Stochastic Process. Appl. 116 (2006), no. 5, 757--778. MR2218334 (2007k:60151)
  7. Eisenbaum, Nathalie; Kyprianou, Andreas E. On the parabolic generator of a general one-dimensional Lévy process. Electron. Commun. Probab. 13 (2008), 198--209. MR2399282 (2009d:60142)
  8. K. D. Elworthy, A. Truman and H. Z. Zhao, Generalized Ito Formulae and space-time Lebesgue-Stieltjes integrals of local times, SÈminaire de ProbabilitÈs, Vol XL, Lecture Notes in Mathematics 1899, Springer-Verlag, (2007), 117-136.
  9. Feng, Chunrong; Zhao, Huaizhong. Two-parameter $p,q$-variation paths and integrations of local times. Potential Anal. 25 (2006), no. 2, 165--204. MR2238942 (2008h:60325)
  10. Feng, Chunrong; Zhao, Huaizhong. Rough path integral of local time. C. R. Math. Acad. Sci. Paris 346 (2008), no. 7-8, 431--434. MR2417564 (2009e:60180)
  11. Flandoli, Franco; Russo, Francesco; Wolf, Jochen. Some SDEs with distributional drift. II. Lyons-Zheng structure, Itô's formula and semimartingale characterization. Random Oper. Stochastic Equations 12 (2004), no. 2, 145--184. MR2065168 (2006a:60105)
  12. Föllmer, Hans; Protter, Philip; Shiryayev, Albert N. Quadratic covariation and an extension of Itô's formula. Bernoulli 1 (1995), no. 1-2, 149--169. MR1354459 (96k:60121)
  13. Föllmer, Hans; Protter, Philip. On Itô's formula for multidimensional Brownian motion. Probab. Theory Related Fields 116 (2000), no. 1, 1--20. MR1736587 (2001b:60097)
  14. Getoor, R. K.; Kesten, H. Continuity of local times for Markov processes. Compositio Math. 24 (1972), 277--303. MR0310977 (46 #10075)
  15. Ikeda, Nobuyuki; Watanabe, Shinzo. Stochastic differential equations and diffusion processes.North-Holland Mathematical Library, 24. North-Holland Publishing Co., Amsterdam-New York; Kodansha, Ltd., Tokyo, 1981. xiv+464 pp. ISBN: 0-444-86172-6 MR0637061 (84b:60080)
  16. Itô, Kiyosi. Stochastic integral. Proc. Imp. Acad. Tokyo 20, (1944). 519--524. MR0014633 (7,313c)
  17. I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Second Edition, Springer-Verlag: New York, 1991.
  18. H. Kunita and S. Watanabe, On square-integrable martingales, Nagoya Math. J., Vol 30 (1967), 209-245.
  19. Lejay, Antoine. An introduction to rough paths. Séminaire de Probabilités XXXVII, 1--59, Lecture Notes in Math., 1832, Springer, Berlin, 2003. MR2053040 (2005e:60120)
  20. Lévy, Paul. Processus stochastiques et mouvement brownien.(French) Suivi d'une note de M. Loève. Deuxième édition revue et augmentée Gauthier-Villars & Cie, Paris 1965 vi+438 pp. MR0190953 (32 #8363)
  21. Lyons, Terry. Differential equations driven by rough signals. I. An extension of an inequality of L. C. Young. Math. Res. Lett. 1 (1994), no. 4, 451--464. MR1302388 (96b:60150)
  22. Lyons, Terry J. Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998), no. 2, 215--310. MR1654527 (2000c:60089)
  23. Lyons, Terry; Qian, Zhongmin. System control and rough paths.Oxford Mathematical Monographs. Oxford Science Publications.Oxford University Press, Oxford, 2002. x+216 pp. ISBN: 0-19-850648-1 MR2036784 (2005f:93001)
  24. Marcus, Michael B.; Rosen, Jay. Sample path properties of the local times of strongly symmetric Markov processes via Gaussian processes. Ann. Probab. 20 (1992), no. 4, 1603--1684. MR1188037 (93k:60089)
  25. Marcus, Michael B.; Rosen, Jay. $p$-variation of the local times of symmetric stable processes and of Gaussian processes with stationary increments. Ann. Probab. 20 (1992), no. 4, 1685--1713. MR1188038 (94c:60124)
  26. Meyer, P. A. Un cours sur les intégrales stochastiques.(French) Séminaire de Probabilités, X (Seconde partie: Théorie des intégrales stochastiques, Univ. Strasbourg, Strasbourg, année universitaire 1974/1975), pp. 245--400. Lecture Notes in Math., Vol. 511, Springer, Berlin, 1976. MR0501332 (58 #18721)
  27. S. Moret and D. Nualart, Generalization of Ito's formula for smooth nondegenerate martingales, Stochastic Process. Appl. 91, 115-149, 2001.
  28. Perkins, Edwin. Local time is a semimartingale. Z. Wahrsch. Verw. Gebiete 60 (1982), no. 1, 79--117. MR0661760 (84e:60117)
  29. Protter, Philip E. Stochastic integration and differential equations.Second edition. Version 2.1.Corrected third printing.Stochastic Modelling and Applied Probability, 21. Springer-Verlag, Berlin, 2005. xiv+419 pp. ISBN: 3-540-00313-4 MR2273672 (2008e:60001)
  30. Revuz, Daniel; Yor, Marc. Continuous martingales and Brownian motion.Third edition.Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1999. xiv+602 pp. ISBN: 3-540-64325-7 MR1725357 (2000h:60050)
  31. Rogers, L. C. G.; Walsh, J. B. Local time and stochastic area integrals. Ann. Probab. 19 (1991), no. 2, 457--482. MR1106270 (92g:60107)
  32. Tanaka, Hiroshi. Note on continuous additive functionals of the $1$-dimensional Brownian path. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1 1962/1963 251--257. MR0169307 (29 #6559)
  33. Q. F. Wang, Loughborough University PhD thesis, in preparation.
  34. A. T. Wang, Generalized Ito's formula and additive functionals of Brownian motion, Z.Wahrscheinlichkeitstheorie and Verw Gebiete, 41(1977), 153-159.
  35. Williams, David R. E. Path-wise solutions of stochastic differential equations driven by Lévy processes. Rev. Mat. Iberoamericana 17 (2001), no. 2, 295--329. MR1891200 (2003h:60102)
  36. Young, L. C. An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67 (1936), no. 1, 251--282. MR1555421


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.