Download this PDF file Fullscreen Fullscreen Off
References
- Billingsley, P. Convergence of probability measures. (1968), John Wiley & Sons. MR0233396 (38 #1718)
- Cox, J.T.; Durrett, R.; Perkins, E.A.; Rescaled voter models converge to super-Brownian motion. Ann. Probab. 28 (2000), no. 1, 185--234. MR1756003 (2001d:60105)
- Cox, J.T.; Durrett, R.; Perkins, E.A.; Voter model perturbations and reaction diffusion equations. Preprint.
- Cox, J.T.; Perkins, E.A. Rescaled Lotka-Volterra models converge to super-Brownian motion. Ann. Probab. 3 (2005), no. 3, 904--947. MR2135308 (2006a:60190)
- Cox, J.T.; Perkins, E.A. Survival and coexistence in stochastic spatial Lotka-Volterra models. Probab. Theory Related Fields 139 (2007), no. 1-2, 89--142. MR2322693(2008f:60101)
- Cox, J.T.; Perkins, E.A. Renormalization of the two-dimensional Lotka-Volterra model. Ann. Appl. Probab. 18 (2008), no. 2, 747--812. MR2399711" (2009b:60295)
- Durrett,R.; Remenik,D. Voter model perturbations in two dimensions. Preprint.
- Lawler, G.F. Intersections of random walks. Probability and its Applications. Birkhauser. (1991) MR1117680 (92f:60122)
- Le Gall, J.-F.;Perkins, E.A. The Hausdorff measure of the support of two-dimensional super-Brownian motion. Ann. Probab. 23 (1995), no. 4, 1719--1747. MR1379165 (96m:60114)
- Liggett, T.M. Interacting particle systems. Springer-Verlag. MR0776231 (86e:60089)
- Neuhauser, C.; Pacala, S.W. An explicitly spatial version of the Lotka-Volterra model with interspecific competition. Ann. Appl. Probab. 9, (1999), no. 4, 1226--1259. MR1728561 (2001d:92013)
- Perkins, E. Measure-valued processes and interactions. , Ecole d'Ete de Probabilites de Saint Flour XXIX-1999, Lecture Notes in Mathematics 1781 (2002) 125--329. MR1915443
- Spitzer, F. Principles of random walks. 2nd ed. Springer-Verlag. 1976. MR0388547 (52 #9383)

This work is licensed under a Creative Commons Attribution 3.0 License.