Download this PDF file Fullscreen Fullscreen Off
References
- G. A. BROSAMLER (1988). An almost everywhere central limit theorem, Math. Proc. Cambridge Philos. , 104, 561-574 Math. Review 89i:60045
- G. A. BROSAMLER (1990). A simultaneous almost everywhere central limit theorem, for diffusions and its application to path energy and eigenvalues of the Laplacian, Illinois J. Math., 34 526-556 Math. Review 91i:60189
- I.BERKES and H. DEHLING (1993). Some limit theorems in log density, Ann. Probab. Vol. 23, No. 3, 1640-1670 Math. Review 94h:60026
- F. CHAABANE F. MAAOUIA and A. TOUATI (1998). Généralisation du théorème de la limite centrale presque-sûre pour les martingales vectorielles, C. R. Acad. Sci. Paris, T 326, Série I, 229-232. Math. Review 99i:60061
- F. CHAABANE (2001). Invariance principles with logarithmic averaging for martingales, To appear in Studia Math. Sci. Hungar. Math. Review number not available.
- M. CSÖRGÖ, L. HORVÁTH (1992). Invariance principles for logarithmic averages, Proc. Camb. Phil. Soc., 112-195. Math. Review 93e:60057
- D. DACUNHA-CASTELLE and M. DUFLO (1983). Probabililés et statistiques (2. Problèmes à temps mobiles), Masson, (1983). Math. Review 85k:60001
- J. D. DEUSCHEL and D. W. STROOCK (1989). Large deviations, Academic Press. Math. Review 90h:60026
- M. D. DONSKER (1951). An invariance principle for certain probability limit theorems, Mem. Amer. Math. Soc. 6, Math. Review 12,723a
- M. DUFLO (1997). Random iterative models, Masson Math. Review 98m:62239
- D. FREEDMAN (1983). Brownian motion and diffusion, Springer, New York, Second edition Math. Review 84c:60121
- P. HALL and C. C. HEYDE (1980). Martingale limit theory and its application. Probability and Mathematical Statistics, Academic Press Math. Review 83a:60001
- M. K. HECK (1995). Das Prinzip der gzo(beta )en Abweichungen fur fas sicheren Zentralen Grenzwertsatz und fur seine funktionale Verallgemeinerung, Dissertation, Saarbrucken, Germany Math. Review number not avilable
- M. K. HECK (1998). The principle of large deviations for the almost everywhere central limit theorem. Stoch, Process Appl. 76, No 1, 61-75. Math. Review 99f:60059
- M. K. HECK (1999). Principle of large deviations for the empirical processes of Ornstein-Uhlenbeck Process, J. Theoret. Probab. 12, No 1, 147-179. Math. Review 2000f:60042
- J. T. HULL (1997). Options, futures, and other deviatives Prentice-Hall, Upper Saddle River, Math. Review number not available
- M. T. LACEY and W. PHILLIP (1990). A note on the almost sure central limit theorem, Statist. Probab. Let. 9, 201-205. Math. Review 91e:60100
- M. A. LIFSHITS and E. S. STANKEVICH (2001). On the Large Deviation Principle for the Almost Sure CLT, Preprint Université de Lille, France. Math. Review number not available
- F. MAAOUIA (1987). Comportements asymptotiques des fonctionnelles additives des processus de Markov récurrents au sens de Harris, Thèse de 3ème cycle, Université de Paris VII. Math. Review number not available
- F. MAAOUIA (1996). Versions fortes du théorème de la limite centrale pour les processus de Markov, C. R. Acad. Sci. Paris, T 323, Série I, 293-296. Math. Review 97c:60182
- F. MAAOUIA (2001). Principes d'invariance par moyennisation logarithmique pour les processus de Markov, To appear in The Annals of Probability. Math. Review number not available
- P. MARCH and T. SEPPALAINEN (1997). Large deviations from the almost everywhere central limit theorem, J. Theor. Probab. 10, 935-965. Math. Review 98m:60040
- S. P. MEYN and R. L. TWEEDIE (1993). Markov Chains and Stochastic Stability, Springer. Math. Review 98m:60040
- E. NUMMELIN (1983). General irreducible Markov chains and negative operators, Cambridge University Press. Math. Review 90k:60131
- E. NUMMELIN and R. L. TWEEDIE (1978). Geometric ergodicity and R-positivity for general Markov chains, Ann. of Probab. Vol. 6, 404-420. Math. Review 57 #7773
- B. RODZIK and Z. RYCHLIK (1994). An almost sure central limit theorem for independent random variables, Ann. IHP Vol. 30, No. 1, 1-11. Math. Review 95c:60029
- P. SCHATTE (1988). On strong versions of the central limit theorem, Math. Nachr. 137, 249-256. Math. Review 89g:60114
- A. TOUATI (1990). Loi fonctionnelle du logarithme itéré pour des processus de Markov récurrents, Ann. Prob. Vol. 18, No. 1, 140-159. Math. Review 92a:60094
- A. TOUATI (1995). Sur les versions fortes du théoerème de la limite centrale, Preprint Université de Marne-La-Vallée, No 23. Math. Review numbernot available
- S. R. S. VARADHAN (1984). Large deviations and applications, SIAM, Philadelphia, (1984). Math. Review 86h:60067b

This work is licensed under a Creative Commons Attribution 3.0 License.