The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off

References

  1. Beghin, L., Hochberg, K., and Orsingher, E. (2000), Conditional maximal distributions of processes related to higher-order heat-type equations. Stoch. Proc. Appl. 85, 209-223. Math. Review number not avilable.
  2. Burdzy, K. (1993), Some path properties of iterated Brownian motion. in Seminar on Stochastic Process 1992, E. Cinlar, K. L. Chung, and M. Sharpe eds., Birkhauser-Boston, 67-83. Math. Review 95c:60075
  3. Burdzy, K. and Madrecki, A. (1995), An asymptotically 4-stable process. J. Fourier Anal. Appl. Special Issue, Proceeding of the Conference in Honor of J. P. Kahane, 97-117. Math. Review 96j:60072
  4. Burdzy, K. and Madrecki, A. (1996), Itô formula for an asymptotically 4-stable process. Ann. of Appl. Prob. 6, 200-217. Math. Review 99a:60042
  5. Doetsch, G. (1974), Introduction to the Theory and Application of the Laplace Transformation. Springer-Verlag. Math. Review 49:9549
  6. Eidelman, S. D. and Zhitarashu, N. V. (1998), Parabolic Boundary Value Problems. Oper. Theor. Adv. Appl. 101 Birkhauser. Math. Review 94m:35134
  7. Funaki, T. (1979), Probabilistic construction of the solution of some higher order parabolic differential equations. Proc. Japan Acad. 55, 176-179. Math. Review 80h:60075
  8. Hochberg, K. J. (1978), A signed measure on path space related to Wiener measure. Ann. Prob. 6, 433-458. Math. Review 80i:60111
  9. Krylov, Y, Ju. (1960), Some properties of the distribution corresponding to the equation $partial u / partial t = ( - 1 )^{q+1} partial^{2q} u / partial^{2q} x$. Soviet Math. Dokl. 1, 760-763. Math. Review 22:9722
  10. Nakajima, T. and Sato, S. (1999), On the joint distribution of the first hitting time and the first hitting place to the space-time wedge domain of a biharmonic pseudo process. Tokyo J. Math. 22, 399-413. Math. Review 2000k:60072
  11. Nishioka, K. (1985), Stochastic calculus for a class of evolution equations. Japan. J. Math. 11, 59-102. Math. Review 88f:60101
  12. Nishioka, K. (1987), A stochastic solution of a high order parabolic equation. J. Math. Soc. Japan. 39, 209-231. Math. Review 89f:35097
  13. Nishioka, K. (1996), Monopole and dipole of a biharmonic pseudo process. Proc. Japan Acad., Ser. A 72, 47-50. Math. Review 97g:60117
  14. Nishioka, K. (1997), The first hitting time and place of a half-line by a biharmonic pseudo process. Japan. J. Math. 23, 235-280. Math. Review 99f:60080
  15. Schwartz, L. (1966), Mathematics for the physical sciences, 2-nd ed.. Hermann. Math. Review 34:7309
  16. Strichartz, R. (1994), A Guide to Distribution Theory and Fourier Transforms. CRC Press. Math. Review 95f:42001
  17. Temam, R. (1997), Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2-nd ed.. Appl. Math. Sci. 68, Springer-Verlag. Math. Review 98b:58056


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.