Download this PDF file Fullscreen Fullscreen Off
References
- F. Avram, A.E. Kyprianou and M.R. Pistorius. Exit problems for spectrally negative Leevy processes and applications to (Canadized) Russian options. Annals of Applied Probability, 2005. Math. Review 2005c:60053
- J. Bertoin. Levy Processes. Cambridge Tracts in Mathematics 121 (1998) Math. Review 98e:60117
- S.K. Chiu and C. Yin. Passage times for a spectrally negative Levy process with applications to risk theory. to appear in Bernouilli. Math. Review number not available.
- T. Chan, E.A. Kyprianou and M. Savov. Smoothness of Scale Functions for Spectrally negative Levy Processes to appear in Probability Theory and Related Fields. Math. Review number not available.
- R. Doney and M. Savov. Right-inverses of Levy Processes. Annals of Probability 4 (2010), 1390-1400. Math. Review number not available.
- K. van Harn and F.W. Steutel. Stationarity of delayed subordinators. Stoch. Models. 17 (2001), 369-374 Math. Review 2002g:60050
- H. Kesten. Hitting probabilities of single points for processes with stationary independent increments Mem. of the American Mathematical Society 93 (1969). Math. Review 42 #6940
- J.F.C. Kingman. Regenerative Phenomena. Wiley Series in Probability and Mathematical Statistics (1972). Math. Review 50 #3353
- J.F.C. Kingman. The stochastic theory of regenerative events. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 180-224. Math. Review 32 #1758"
- F. Spitzer. Principles of Random Walk. Graduate Texts in Mathematics, Springer 34 (1976) Math. Review 52 #9383"
- T. W. Koerner. Fourier analysis. Cambridge University Press, Cambridge (1989). Math. Review 90j:42001
- R. Song and Z. Vondracek. Potential theory of special subordinators and subordinate killed stable processes. J. Theor. Prob. 19 (2006), 817-847. Math. Review 2008g:60237"

This work is licensed under a Creative Commons Attribution 3.0 License.