Download this PDF file Fullscreen Fullscreen Off
References
- Avena, Luca. Random Walks in Dynamic Random Environments, PhD thesis, Leiden, 2010. Available on the online catalogue of the Leiden University Library: www.catalogus.leidenuniv.nl Math. Review number not available
- Avena, L.; den Hollander, F.; Redig, F. Large deviation principle for one-dimensional random walk in dynamic random environment: attractive spin-flips and simple symmetric exclusion. Markov Process. Related Fields 16 (2010), no. 1, 139--168. Math. Review 2664339
- Bandyopadhyay, Antar; Zeitouni, Ofer. Random walk in dynamic Markovian random environment. ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006), 205--224. Math. Review 2007e:60097
- Berbee, Henry. Convergence rates in the strong law for bounded mixing sequences. Probab. Theory Related Fields 74 (1987), no. 2, 255--270. Math. Review 88d:60093
- Boldrighini, C.; Minlos, R. A.; Pellegrinotti, A. Random walk in a fluctuating random environment with Markov evolution. On Dobrushin's way. From probability theory to statistical physics, 13--35, Amer. Math. Soc. Transl. Ser. 2, 198, Amer. Math. Soc., Providence, RI, 2000. Math. Review 2001k:60148
- Boldrighini, C.; Minlos, R. A.; Pellegrinotti, A. Discrete-time random motion in a continuous random medium. Stochastic Process. Appl. 119 (2009), no. 10, 3285--3299. Math. Review 2568274
- Bricmont, Jean; Kupiainen, Antti. Random walks in space time mixing environments. J. Stat. Phys. 134 (2009), no. 5-6, 979--1004. Math. Review 2010d:60222
- Comets, Francis; Zeitouni, Ofer. A law of large numbers for random walks in random mixing environments. Ann. Probab. 32 (2004), no. 1B, 880--914. Math. Review 2005i:60202
- den Hollander, F.; Kesten, H.; Sidoravicius, V. Random walk in a high density dynamic random environment. Work in progress.
- Dolgopyat, Dmitry; Keller, Gerhard; Liverani, Carlangelo. Random walk in Markovian environment. Ann. Probab. 36 (2008), no. 5, 1676--1710. Math. Review 2009f:60124
- Georgii, Hans-Otto. Gibbs measures and phase transitions. de Gruyter Studies in Mathematics, 9. Walter de Gruyter & Co., Berlin, 1988. xiv+525 pp. ISBN: 0-89925-462-4 Math. Review 89k:82010
- Giacomin, Giambattista; Olla, Stefano; Spohn, Herbert. Equilibrium fluctuations for $nablaphi$ interface model. Ann. Probab. 29 (2001), no. 3, 1138--1172. Math. Review 2003c:60161
- Holley, Richard. Rapid convergence to equilibrium in one-dimensional stochastic Ising models. Ann. Probab. 13 (1985), no. 1, 72--89. Math. Review 86c:60139
- M. Joseph and F. Rassoul-Agha, Almost sure invariance principle for continuous-space random walk in dynamic random environment, ALEA Lat. Amer. J. Probab. Math. Stat. 6 (2010) 1--15. Math. Review number not available
- Liggett, Thomas M. Interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 276. Springer-Verlag, New York, 1985. xv+488 pp. ISBN: 0-387-96069-4 Math. Review 86e:60089
- Maes, Christian; Shlosman, Senya B. When is an interacting particle system ergodic? Comm. Math. Phys. 151 (1993), no. 3, 447--466. Math. Review 94e:82073
- Martinelli, Fabio. Lectures on Glauber dynamics for discrete spin models. Lectures on probability theory and statistics (Saint-Flour, 1997), 93--191, Lecture Notes in Math., 1717, Springer, Berlin, 1999. Math. Review 2002a:60163
- Rassoul-Agha, Firas. The point of view of the particle on the law of large numbers for random walks in a mixing random environment. Ann. Probab. 31 (2003), no. 3, 1441--1463. Math. Review 2004h:60151
- Rassoul-Agha, Firas; Sepp?l?inen, Timo. An almost sure invariance principle for random walks in a space-time random environment. Probab. Theory Related Fields 133 (2005), no. 3, 299--314. Math. Review 2007f:60030
- Steif, Jeffrey E. $overline d$-convergence to equilibrium and space-time Bernoullicity for spin systems in the $M
Ergodic Theory Dynam. Systems 11 (1991), no. 3, 547--575. Math. Review 93b:60232 - Bolthausen, Erwin; Sznitman, Alain-Sol. Ten lectures on random media. DMV Seminar, 32. Birkh?user Verlag, Basel, 2002. vi+116 pp. ISBN: 3-7643-6703-2 Math. Review 2003f:60183
- Sznitman, Alain-Sol; Zerner, Martin. A law of large numbers for random walks in random environment. Ann. Probab. 27 (1999), no. 4, 1851--1869. Math. Review 2001f:60116
- Williams, David. Probability with martingales. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991. xvi+251 pp. ISBN: 0-521-40455-X; 0-521-40605-6 Math. Review 93d:60002
- Zeitouni, Ofer. Random walks in random environment. Lectures on probability theory and statistics, 189--312, Lecture Notes in Math., 1837, Springer, Berlin, 2004. Math. Review 2006a:60201
- Zeitouni, Ofer. Random walks in random environments. J. Phys. A 39 (2006), no. 40, R433--R464. Math. Review 2007h:60097

This work is licensed under a Creative Commons Attribution 3.0 License.