The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off

References

  1. Berger, Quentin; Toninelli, Fabio Lucio. On the critical point of the random walk pinning model in dimension $d=3$. Electron. J. Probab. 15 (2010), no. 21, 654--683. MR2650777
  2. Bhattacharya, R. N.; Ranga Rao, R. Normal approximation and asymptotic expansions. Reprint of the 1976 original. Robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1986. xiv+291 pp. ISBN: 0-89874-690-6 MR0855460 (87k:60062)
  3. Birkner, Matthias. Particle Systems with Locally Dependent Branching: Long-Time Behaviour, Genealogy and Critical Parameters. Dissertation, Johann Wolfgang Goethe-Universität Frankfurt am Main, 2003. http://publikationen.ub.uni-frankfurt.de/volltexte/2003/314/
  4. Birkner, Matthias. A condition for weak disorder for directed polymers in random environment. Electron. Comm. Probab. 9 (2004), 22--25 (electronic). MR2041302
  5. Birkner, Matthias. Conditional large deviations for a sequence of words. Stochastic Process. Appl. 118 (2008), no. 5, 703--729. MR2411517 (2009i:60051)
  6. Birkner, Matthias; Greven, Andreas; den Hollander, Frank. Quenched large deviation principle for words in a letter sequence. Probab. Theory Relat. Fields 148 (2010), no. 3/4, 403--456.
  7. Birkner, Matthias; Sun, Rongfeng. Annealed vs quenched critical points for a random walk pinning model. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010), no. 2, 414--441. MR2667704
  8. Birkner, Matthias; Sun, Rongfeng. Disorder relevance for the random walk pinning model in dimension 3. Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011), no. 1, 259--293.
  9. Bolthausen, Erwin. A note on the diffusion of directed polymers in a random environment. Comm. Math. Phys. 123 (1989), no. 4, 529--534. MR1006293 (91a:60270)
  10. Camanes, A.; Carmona, P. The critical temperature of a directed polymer in a random environment. Markov Process. Related Fields 15 (2009), no. 1, 105--116. MR2509426 (2010g:60220)
  11. Comets, Francis; Shiga, Tokuzo; Yoshida, Nobuo. Directed polymers in a random environment: path localization and strong disorder. Bernoulli 9 (2003), no. 4, 705--723. MR1996276 (2004f:60210)
  12. Comets, Francis; Yoshida, Nobuo. Directed polymers in random environment are diffusive at weak disorder. Ann. Probab. 34 (2006), no. 5, 1746--1770. MR2271480 (2007m:60305)
  13. Chover, Joshua. A law of the iterated logarithm for stable summands. Proc. Amer. Math. Soc. 17 1966 441--443. MR0189096 (32 #6523)
  14. Dembo, Amir; Zeitouni, Ofer. Large deviations techniques and applications. Second edition. Applications of Mathematics (New York), 38. Springer-Verlag, New York, 1998. xvi+396 pp. ISBN: 0-387-98406-2 MR1619036 (99d:60030)
  15. Doney, R. A. One-sided local large deviation and renewal theorems in the case of infinite mean. Probab. Theory Related Fields 107 (1997), no. 4, 451--465. MR1440141 (98e:60040)
  16. Evans, M.R.; and Derrida, B.. Improved bounds for the transition temperature of directed polymers in a finite-dimensional random medium, J. Stat. Phys. 69 (1992), 427--437.
  17. Greven, Andreas. A phase transition for the coupled branching process. I. The ergodic theory in the range of finite second moments. Probab. Theory Related Fields 87 (1991), no. 4, 417--458. MR1085176 (92e:60193)
  18. Greven, A. On phase-transitions in spatial branching systems with interaction. Stochastic models (Ottawa, ON, 1998), 173--204, CMS Conf. Proc., 26, Amer. Math. Soc., Providence, RI, 2000. MR1765010 (2001h:60181)
  19. Greven, A.; den Hollander, F. Phase transitions for the long-time behavior of interacting diffusions. Ann. Probab. 35 (2007), no. 4, 1250--1306. MR2330971 (2008h:60405)
  20. Heyde, C. C. A note concerning behaviour of iterated logarithm type. Proc. Amer. Math. Soc. 23 1969 85--90. MR0251772 (40 #4999)
  21. den Hollander, Frank. Random polymers. Lectures from the 37th Probability Summer School held in Saint-Flour, 2007. Lecture Notes in Mathematics, 1974. Springer-Verlag, Berlin, 2009. xiv+258 pp. ISBN: 978-3-642-00332-5 MR2504175 (2010h:60265)
  22. Ibragimov, I. A.; Linnik, Yu. V. Independent and stationary sequences of random variables. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov. Translation from the Russian edited by J. F. C. Kingman. Wolters-Noordhoff Publishing, Groningen, 1971. 443 pp. MR0322926 (48 #1287)
  23. Kallenberg, Olav. Stability of critical cluster fields. Math. Nachr. 77 (1977), 7--43. MR0443078 (56 #1451)
  24. Kallenberg, Olav. Foundations of modern probability. Second edition. Probability and its Applications (New York). Springer-Verlag, New York, 2002. xx+638 pp. ISBN: 0-387-95313-2 MR1876169 (2002m:60002)
  25. Monthus, C.; Garel, T.. Freezing transition of the directed polymer in a 1+d random medium: Location of the critical temperature and unusual critical properties. Phys. Rev. E 74 (2006), 011101.
  26. Seneta, Eugene. Regularly varying functions. Lecture Notes in Mathematics, Vol. 508. Springer-Verlag, Berlin-New York, 1976. v+112 pp. MR0453936 (56 #12189)
  27. Spitzer, Frank. Principles of random walks. Second edition. Graduate Texts in Mathematics, Vol. 34. Springer-Verlag, New York-Heidelberg, 1976. xiii+408 pp. MR0388547 (52 #9383)


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.