Critical Multitype Branching Systems: Extinction Results

Peter Kevei (Centro de Investigacion en Matematicas Mexico)
Jose Alfredo Lopez Mimbela (Centro de Investigacion en Matematicas Mexico)

Abstract


We consider a critical branching particle system in $\mathbb{R}^d$, composed of individuals of a finite number of types $i\in\{1,\ldots,K\}$. Each individual of type i moves independently according to a symmetric $\alpha_i$-stable motion. We assume that the particle lifetimes and offspring distributions are type-dependent. Under the usual independence assumptions in branching systems, we prove extinction theorems in the following cases: (1) all the particle lifetimes have finite mean, or (2) there is a type whose lifetime distribution has heavy tail, and the other lifetimes have finite mean. We get a more complex dynamics by assuming in case (2) that the most mobile particle type corresponds to a finite-mean lifetime: in this case, local extinction of the population is determined by an interaction of the parameters (offspring variability, mobility, longevity) of the long-living type and those of the most mobile type. The proofs are based on a precise analysis of the occupation times of a related Markov renewal process, which is of independent interest.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1356-1380

Publication Date: August 9, 2011

DOI: 10.1214/EJP.v16-908

References

  1. D.B.H. Cline, T. Hsing. Large deviation probabilities for sums of random variables with heavy or subexponential tails (1998). Math. Review number not available.
  2. D. Drasin, E. Seneta. A generalization of slowly varying functions. Proc. Amer. Math. Soc. 96 (1986), no. 3, 470--472. Math. Review MR0822442
  3. K. Fleischmann, V.A. Vatutin. An integral test for a critical multitype spatially homogeneous branching particle process and a related reaction-diffusion system. Probab. Theory Related Fields 116 (2000), no. 4, 545--572. Math. Review MR1757599
  4. L.G. Gorostiza, S. Roelly, A. Wakolbinger. Persistence of critical multitype particle and measure branching processes. Probab. Theory Related Fields 92 (1992), no. 3, 313--335. Math. Review MR1165515
  5. M.I. Goldstein. Critical age-dependent branching processes: Single and multitype. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 17 (1971), 74--88. Math. Review MR0278402
  6. L.G. Gorostiza, A. Wakolbinger. Persistence criteria for a class of critical branching particle systems in continuous time. Ann. Probab. 19 (1991), no. 1, 266--288. Math. Review MR1085336
  7. O. Kallenberg. Stability of critical cluster fields. Math. Nachr. 77 (1977), 7--43. Math. Review MR0443078
  8. J.A. L'opez-Mimbela, A. Wakolbinger. Clumping in multitype-branching trees. Adv. Appl. Prob. 28 (1996), 1034--1050. Math. Review MR1418245
  9. K. Matthes, J. Kerstan, J. Mecke. Infinitely divisible point processes. Translated from the German by B. Simon. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Chichester-New York-Brisbane, 1978. Math. Review MR0517931
  10. S.V. Nagaev. On the asymptotic behavior of one-sided large deviation probabilities. Teor. Veroyatnost. i Primenen. 26 (1981), no. 2, 369--372. Math. Review MR0616627
  11. G.R. Shorack, J.A. Wellner. Empirical Processes with Applications to Statistics. John Wiley & Sons, New York, (1986). Math. Review MR0838963
  12. V.A. Vatutin. Limit theorems for critical Markov branching processes with several types of particles and infinite second moments. Matem. Sb., 103 (1977), 253--264. (In Russian). Math. Review MR0443115
  13. V.A. Vatutin. A limit theorem for a critical Bellman--Harris branching process with several types of particles and infinite second moments. Theory Probab. Appl. 23 (1978), 4, 776--688. Math. Review MR0516277
  14. V.A. Vatutin. Discrete limit distributions of the number of particles in a Bellman--Harris branching process with several types of particles. Theory Probab. Appl. 24 (1979), 509--520. Math. Review MR0541363
  15. V.A. Vatutin, A. Wakolbinger. Spatial branching populations with long individual lifetimes. Theory Probab. Appl. 43 (1999), 620--632. Math. Review MR1692425


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.