Download this PDF file Fullscreen Fullscreen Off
References
- Z. D. Bai and Feifang Hu. Asymptotic theorems for urn models with nonhomogeneous generating matrices. Stochastic Process. Appl. 80 (1999), 87-101. Math. Review MR1670107 (2000b:62028).
- Gopal K. Basak and Amites Dasgupta. Central limit theorems for a class of irreducible multicolor urn models. Proc. Indian Acad. Sci. Math. Sci. 117 (2007), 517-543. Math. Review MR2374847 (2009b:60066).
- Arup Bose, Amites Dasgupta, and Krishanu Maulik. Multicolor urn models with reducible replacement matrices. Bernoulli 15 (2009), 279-295. Math. Review MR2546808 (2010j:60023).
- Arup Bose, Amites Dasgupta, and Krishanu Maulik. Strong laws for balanced triangular urns. J. Appl. Probab. 46 (2009), 571-584. Math. Review MR2535833 (2010j:60024).
- Philippe Flajolet, Philippe Dumas, and Vincent Puyhaubert. Some exactly solvable models of urn process theory. Discrete Math. Theor. Comput. Sci. 8 (2006), 59-118. Math. Review (2011b:60030).
- Raúl Gouet. Strong convergence of proportions in a multicolor Pólya urn. J. Appl. Probab. 34 (1997), 426-435. Math. Review MR1447347 (98f:60065).
- Svante Janson. Functional limit theorems for multitype branching processes and generalized Pólya urns. Stochastic Process. Appl. 110 (2004), 177-245. Math. Review MR2040966 (2005a:60134).
- Svante Janson. Limit theorems for triangular urn schemes. Probab. Theory Related Fields 134 (2006), 417-452. Math. Review MR2226887 (2007b:60051).
- E. Seneta. Non-negative matrices and Markov chains. Springer Series in Statistics. (2006). Springer, New York. Revised reprint of the second (1981) edition. Math. Review MR2209438.

This work is licensed under a Creative Commons Attribution 3.0 License.