Self-Interacting Diffusions IV: Rate of Convergence

Michel Benaïm (Université de Neuchâtel)
Olivier Raimond (Université Paris Ouest)

Abstract


Self-interacting diffusions are processes living on a compact Riemannian manifold defined by a stochastic differential equation with a drift term depending on the past empirical measure of the process. The asymptotics of this measure is governed by a deterministic dynamical system and under certain conditions it converges almost surely towards a deterministic measure. (see Benaïm, Ledoux, Raimond (2002) and Benaïm, Raimond (2005)). We are interested here in the rate of this convergence. A central limit theorem is proved. In particular, this shows that greater is the interaction repelling faster is the convergence.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1815-1843

Publication Date: October 14, 2011

DOI: 10.1214/EJP.v16-948

References

  1. Baxter, J. R.; Brosamler, G. A. Energy and the law of the iterated logarithm. Math. Scand. 38 (1976), no. 1, 115--136. MR0426178 (54 #14124)
  2. Baxter, J. R.; Brosamler, G. A. Recurrence of Brownian motions on compact manifolds.Colloquium in honor of Laurent Schwartz, Vol. 2 (Palaiseau, 1983). Astérisque No. 132 (1985), 15--46. MR0816758 (87f:58171)
  3. Benaïm, Michel; Ledoux, Michel; Raimond, Olivier. Self-interacting diffusions. Probab. Theory Related Fields 122 (2002), no. 1, 1--41. MR1883716 (2003a:60121)
  4. Benaïm, Michel; Raimond, Olivier. Self-interacting diffusions. II. Convergence in law. Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), no. 6, 1043--1055. MR2010396 (2004i:60148)
  5. Benaïm, Michel; Raimond, Olivier. Self-interacting diffusions. III. Symmetric interactions. Ann. Probab. 33 (2005), no. 5, 1717--1759. MR2165577 (2006j:60104)
  6. Benaïm, Michel; Raimond, Olivier. A Bakry-Emery criterion for self-interacting diffusions. Seminar on Stochastic Analysis, Random Fields and Applications V, 19--22, Progr. Probab., 59, Birkhäuser, Basel, 2008. MR2401948 (2009d:60256)
  7. Bhattacharya, R. N. On the functional central limit theorem and the law of the iterated logarithm for Markov processes. Z. Wahrsch. Verw. Gebiete 60 (1982), no. 2, 185--201. MR0663900 (83h:60072)
  8. Billingsley. P. (1968) ``Convergence of Probability Measures'' WHERE article_id=Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons. MR0233396
  9. Conway, John B. A course in functional analysis.Graduate Texts in Mathematics, 96. Springer-Verlag, New York, 1985. xiv+404 pp. ISBN: 0-387-96042-2 MR0768926 (86h:46001)
  10. Da Prato, Giuseppe; Zabczyk, Jerzy. Stochastic equations in infinite dimensions.Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1992. xviii+454 pp. ISBN: 0-521-38529-6 MR1207136 (95g:60073)
  11. DieudonnÈ. J, (1972) ``ElÈments d'Analyse I,'' Gautier-Villars, Paris.
  12. Dudley, R. M. Real analysis and probability.Revised reprint of the 1989 original.Cambridge Studies in Advanced Mathematics, 74. Cambridge University Press, Cambridge, 2002. x+555 pp. ISBN: 0-521-00754-2 MR1932358 (2003h:60001)
  13. Duflo, Marie. Algorithmes stochastiques.(French) [Stochastic algorithms] Mathématiques & Applications (Berlin) [Mathematics & Applications], 23. Springer-Verlag, Berlin, 1996. xiv+319 pp. ISBN: 3-540-60699-8 MR1612815 (99e:62141)
  14. Kunita, Hiroshi. Stochastic flows and stochastic differential equations.Cambridge Studies in Advanced Mathematics, 24. Cambridge University Press, Cambridge, 1990. xiv+346 pp. ISBN: 0-521-35050-6 MR1070361 (91m:60107)
  15. Ledoux. M and Talagrand. M. (1991) "Probability in Banach spaces", Springer (1991). Second printing (2002). MR1102015
  16. Pemantle. R. (2007), A survey of random processes with reinforcement, Probability survey, Vol 4, 1-79. MR2282181
  17. Stroock. D. (1993), "Probability, an Analytic view", Cambridge Univ. Press.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.