Products of Independent non-Hermitian Random Matrices
Alexander B. Soshnikov (University of California Davis)
Abstract
We consider the product of a finite number of non-Hermitian random matrices with i.i.d. centered entries of growing size. We assume that the entries have a finite moment of order bigger than two. We show that the empirical spectral distribution of the properly normalized product converges, almost surely, to a non-random, rotationally invariant distribution with compact support in the complex plane. The limiting distribution is a power of the circular law.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 2219-2245
Publication Date: November 15, 2011
DOI: 10.1214/EJP.v16-954
References
- N. Alexeev, F. G\"{o}tze, A. Tikhomirov. On the singular spectrum of powers and products of random matrices, Doklady Mathematics 82 (2010), 505-507. Math. Review number not available.
- N. Alexeev, F. G\"{o}tze, A. Tikhomirov. On the asymptotic distribution of singular values of power of random matrices. Lithuanian Math. Journal, 50 (2010), 121-132. Math. Review 2011c:15102
- Z. D. Bai. Circular law. Ann. Probab. 25 (1997), 494--529. Math. Review 98k:60040
- Z. D. Bai, Y.Q. Yin. Limiting behavior of the norm of products of random matrices and two problems of Geman-Hwang. Prob. Th. Rel. Fields 73 (1986), 555-569. Math. Review 88e:60041
- Z. D. Bai, B. Miao, B. Jin. On the limit theorem for the eigenvalues of product of two matrices. J. Multivariate Anal. 98 (2007), 76-101. Math. Review 2008d:60041
- Z. D. Bai, J. Silverstein. Spectral analysis of large dimensional random matrices. Springer Series in Statistics (2010) Springer. Math. Review 2011d:60014
- T. Banica, S. Belinschi, M. Capitaine, B. Collins. Free Bessel laws. available at arXiv:0710.5931. Math. Review number not available.
- Z. Burda, R. A. Janik,and B. Waclaw. Spectrum of the product of independent random Gaussian matrices. Phys. Rev. E 81 (2010), 041132. Math. Review 2011g:60013
- Z. Burda et.al. Eigenvalues and singular values of products of rectangular Gaussian random matrices. Phys. Rev. E 82 (2010), 061114. Math. Review MR2787469
- J. Ginibre. Statistical Ensembles of Complex, Quaternion, and Real Matrices. Journal of Mathematical Physics 6 (1965), 440-449. Math. Review MR0173726
- V. L. Girko. Circular law. Theory Probab. Appl. 29 (1984), 694--706. Math. Review 87c:15042
- V. L. Girko. The strong circular law. Twenty years later. II. Random Oper. Stochastic Equations 12 (2004), 255--312. Math. Review 2006e:60045
- V. L. Girko, A.I. Vladimirova. Spectral analysis of stochastic recurrence systems of growing dimension under G-condition. Canonical equation $K_{91}$. Random Oper. Stochastic Equations 17 (2009), 243--274. Math. Review 2010m:60020
- F. G\"{o}tze, A. Tikhomirov. The circular law for random matrices. Annals of Probab. 38 (2010), 1444-1491. Math. Review MR2663633
- F. G\"{o}tze, A. Tikhomirov. On the circular law. available at arXiv:0702386. Math. Review number not available.
- F. G\"{o}tze, A. Tikhomirov. On the asymptotic of spectrum of products of independent random matrices. available at arXiv:1012.2710v1 math.PR. Math. Review number not available.
- R. Horn, Ch. Johnson. Topics in Matrix analysis (1991) Cambridge University Press. Math. Review 92e:15003
- A.M.Khorunzhy, B.A. Khoruzhenko, and L.A. Pastur. Asymptotic properties of large random matrices with independent entries. J. Math. Phys. 37 (1996), 5033--5059. Math. Review 97j:82082
- R. Latala. Some estimates of norms of random matrices. Proc. Amer. Math. Soc. 133 (2005), 1273?1282. Math. Review 2005i:15041
- V. Marchenko, L. Pastur. Distribution of eigenvalues of some sets of random matrices. Math USSR-Sb. 1 (1967), 457--486. Math. Review MR0208649
- C. McDiarmid. On the Method of Bounded Differences. Surveys in Combinatorics 141 (1989), 148-188. Math. Review 91e:05077
- M.L. Mehta. Random Matrices and Statistical Theory of Energy Levels (1967) Academic Press. Math. Review MR0220494
- M.L. Mehta. Random Matrices Pure and Applied Mathematics 142 (2004) Academic Press. Math. Review 2006b:82001
- J.A. Mingo, R.Speicher. Sharp bounds for sums associated to graphs of matrices. available at arXiv:0909.4277. Math. Review number not available.
- G. Pan, W. Zhou. Circular law, extreme singular values and potential theory. J. Multivariate Anal. 101 (2010), 645-656. Math. Review 2011a:60033
- M. Rudelson. Invertibility of random matrices: Norm of the inverse. Ann. of Math. 168 (2008), 575-600 (2008). Math. Review 2009i:60104
- M. Rudelson, R. Vershynin. The Littlewood-Offord problem and invertibility of random matrices. Adv. Math. 218 (2008), 600-633. Math. Review 2010g:60048
- T. Tao, V. Vu. Random Matrices: the Circular Law. Commun. Contemp. Math. 10, (2008), 261-307 (2008). Math. Review 2009d:60091
- T. Tao, V. Vu. Random Matrices: Universality of ESDs and the Circular Law. Annals of Probab. 38 (2010), 2023-2065. Math. Review 2011e:60017

This work is licensed under a Creative Commons Attribution 3.0 License.