Download this PDF file Fullscreen Fullscreen Off
References
- J. Berestycki, N. Berestycki and J. Schweinsberg. Beta-coalescents and continuous stable random trees. Ann. Probab. 35 (2007), 1835-1887. Math. Review 2009d:60244
- J. Berestycki, N. Berestycki and V. Limic. Asymptotic sampling formulae and particle system representations for Lambda-coalescents. Preprint available at arXiv:1101.1875
- M.G.B. Blum and O. Francois. Minimal clade size and external branch length under the neutral coalescent. Adv. Appl. Prob. 37 (2005), 647-662. Math. Review 2006f:92020
- A. Caliebe, R. Neininger, M. Krawczak and U. Rösler. On the length distribution of external branches in coalescent trees: Genetic diversity within species. Theor. Population Biology. 72 (2007), 245-252.
- R. Durrett. Probability models for DNA sequence evolution. Springer-Verlag (2002) Berlin, New-York. Math. Review 2003b:60003
- F. Freund and M. Möhle. On the time back to the most recent common ancestor and the external branch length of the Bolthausen-Sznitman coalescent. Markov Proc. Rel. Fields. 15 (2009), 387-416. Math. Review 2011b:60296
- Y.X. Fu and W.H. Li. Statistical tests of neutrality of mutations. Genetics 133 (1993), 693-709.
- A. Gnedin, A. Iksanov and M. Möhle. On asymptotics of exchangeable coalescents with multiple collisions. J. Appl. Probab. 45 (2007), 1186-1195. Math. Review 2010b:60096
- S. Janson. Sorting using complete subintervals and the maximum number of runs in a randomly evolving sequence. Ann. Comb. 12 (2009), 417-447. Math. Review 2011a:60042
- S. Janson and J. Spencer. A point process describing the component sizes in the critical window of the random graph evolution. Combin. Probab. Comput. 16 (2007), 631-658. Math. Review 2008f:05179
- O. Kallenberg. Foundations of Modern Probability, second ed. Springer-Verlag (2002) Berlin, New-York. Math. Review 2003b:60003
- J.F.C. Kingman. The coalescent. Stoch. Process. Appl. 13 (1982), 235-248. Math. Review 84a:60079
- M. Möhle. Asymptotic results for coalescent processes without proper frequencies and applications to the two-parameter Poisson-Dirichlet coalescent. Stoch. Process. Appl. 120 (2010), 2159-2173. Math. Review 2011j:60235
- J. Pitman. Coalescents with multiple collisions. Ann. Probab. 27 (1999), 1870-1902. Math. Review 2001h:60016
- D. Steinsaltz. Random time changes for sock-sorting and other stochastic process limit theorems. Electron. J. Probab. 4 (1999), 1-25. Math. Review 2000e:60038

This work is licensed under a Creative Commons Attribution 3.0 License.