Download this PDF file Fullscreen Fullscreen Off
References
- S. Chatterjee, E. Meckes. Multivariate normal approximation using exchangeable pairs. ALEA Lat. Am. J. Probab. Math. Stat. 4 (2008), 257--283. MR2453473 (2010c:60072)
- L.H.Y. Chen, Q.M. Shao. Stein's method for normal approximation. An introduction to Stein's method, 1--59, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 4, Singapore Univ. Press, Singapore, 2005. MR2235448
- P. Diaconis, M. Shahshahani. On the eigenvalues of random matrices. Studies in applied probability. J. Appl. Probab. 31A (1994), 49--62. MR1274717 (95m:60011)
- J. Fulman. Stein's method, heat kernel, and traces of powers of elements of compact Lie groups, 2010. Available on arXiv.org:1005.1306.
- S. Helgason. Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions. Corrected reprint of the 1984 original. Mathematical Surveys and Monographs, 83. American Mathematical Society, Providence, RI, 2000. xxii+667 pp. ISBN: 0-8218-2673-5 MR1790156 (2001h:22001)
- C.P. Hughes, Z. Rudnick. Mock-Gaussian behaviour for linear statistics of classical compact groups. Random matrix theory. J. Phys. A 36 (2003), no. 12, 2919--2932. MR1986399 (2004e:60012)
- N. Ikeda, S. Watanabe. Stochastic differential equations and diffusion processes. Second edition. North-Holland Mathematical Library, 24. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. xvi+555 pp. ISBN: 0-444-87378-3 MR1011252 (90m:60069)
- K. Johansson. On random matrices from the compact classical groups. Ann. of Math. (2) 145 (1997), no. 3, 519--545. MR1454702 (98e:60016)
- T. LÃvy. Schur-Weyl duality and the heat kernel measure on the unitary group. Adv. Math. 218 (2008), no. 2, 537--575. MR2407946 (2009g:15075)
- E. Meckes. On Stein's method for multivariate normal approximation. High dimensional probability V: the Luminy volume, 153--178, Inst. Math. Stat. Collect., 5, Inst. Math. Statist., Beachwood, OH, 2009. MR2797946
- L. Pastur, V. Vasilchuk. On the moments of traces of matrices of classical groups. Comm. Math. Phys. 252 (2004), no. 1-3, 149--166. MR2104877 (2005j:60010)
- E.M. Rains. Combinatorial properties of Brownian motion on the compact classical groups. J. Theoret. Probab. 10 (1997), no. 3, 659--679. MR1468398 (99f:60016)
- Y. Rinott, V. Rotar. On coupling constructions and rates in the CLT for dependent summands with applications to the antivoter model and weighted U-statistics. Ann. Appl. Probab. 7 (1997), no. 4, 1080--1105. MR1484798 (99g:60050)
- G. Reinert, A. R?llin. Multivariate normal approximation with Stein's method of exchangeable pairs under a general linearity condition. Ann. Probab. 37 (2009), no. 6, 2150--2173. MR2573554 (2011e:60047)
- E.M. Stein. Topics in harmonic analysis related to the Littlewood-Paley theory. Annals of Mathematics Studies, No. 63 Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo 1970 viii+146 pp. MR0252961 (40 #6176)
- C. Stein. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory, pp. 583--602. Univ. California Press, Berkeley, Calif., 1972. MR0402873 (53 #6687)
- C. Stein. Approximate computation of expectations. Institute of Mathematical Statistics Lecture NotesÂMonograph Series, 7. Institute of Mathematical Statistics, Hayward, CA, 1986. iv+164 pp. ISBN: 0-940600-08-0 MR0882007 (88j:60055)
- C. Stein, The accuracy of the normal approximation to the distribution of the traces of powers of random orthogonal matrices. Department of Statistics, Stanford University, Technical Report No. 470, 1995
- M. Stolz. On the Diaconis-Shahshahani method in random matrix theory. J. Algebraic Combin. 22 (2005), no. 4, 471--491. MR2191648 (2007i:15036)

This work is licensed under a Creative Commons Attribution 3.0 License.