Local Central Limit Theorems in Stochastic Geometry
Yuval Peres (Microsoft Research)
Abstract
We give a general local central limit theorem for the sum of two independent random variables, one of which satisfies a central limit theorem while the other satisfies a local central limit theorem with the same order variance. We apply this result to various quantities arising in stochastic geometry, including: size of the largest component for percolation on a box; number of components, number of edges, or number of isolated points, for random geometric graphs; covered volume for germ-grain coverage models; number of accepted points for finite-input random sequential adsorption; sum of nearest-neighbour distances for a random sample from a continuous multidimensional distribution.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 2509-2544
Publication Date: December 3, 2011
DOI: 10.1214/EJP.v16-968
References
- F. Avram, D. Bertsimas. On central limit theorems in geometrical probability. Ann. Appl. Probab. 3 (1993), 1033-1046. Math. Review 95d:60022
- Yu. Baryshnikov, M.D. Penrose, J.E. Yukich. Gaussian limits for generalized spacings. Ann. Appl. Probab. 19 (2009), 158--185. Math. Review 2010d:60051
- Yu. Baryshnikov, J.E. Yukich. Gaussian limits for random measures in geometric probability. Ann. Appl. Probab. 15 (2005), 213--253. Math. Review 2005j:60043
- E.A. Bender,. Central and local limit theorems applied to asymptotic enumeration. J. Combinatorial Theory A 15 (1973), 91--111. Math. Review 51 #11626
- P. J. Bickel, L. Breiman . Sums of functions of nearest neighbor distances, moment bounds, limit theorems and a goodness of fit test. Ann. Probab. 11 (1983), 185--214. Math. Review 85h:60027
- L. Breiman. Probability. SIAM, Philadelphia (1992). Math. Review 93d:60001
- S. Chatterjee. A new method of normal approximation. Ann. Probab. 36 (2008), 1584--1610. Math. Review 2009j:60043
- B. Davis, D. McDonald. An elementary proof of the local central limit theorem. J. Theoret. Probab. 8 (1995), 693--701. Math. Review 96j:60037
- R. Durrett. Probability: Theory and Examples. 2nd Edition, Wadsworth, Belmont, CA. (1996) Math. Review 98m:60001
- D. Evans, A.J. Jones. A proof of the gamma test. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458 (2002), 2759--2799. Math. Review 2003i:62081
- W. Feller. An Introduction to Probability Theory and its Applications. Vol. II. John Wiley & Sons, New York (1966). Math. Review 35 #1048
- G. Grimmett, J.M. Marstrand. The supercritical phase of percolation is well behaved. Proc. Royal Soc. London A 430 (1990), 439--457. Math. Review 91m:60186
- L. Heinrich, I.S. Molchanov. Central limit theorem for a class of random measures associated with germ-grain models. Adv. Appl. Probab. 31 (1999), 283--314. Math. Review 2001a:60013
- N. Henze. A multivariate two-sample test based on the number of nearest neighbor type coincidences. Ann. Statist. 16 (1988), 772--783. Math. Review 89g:62083
- J.F.C. Kingman. Poisson Processes. Oxford Studies in Probability 3. (1993) Oxford University Press. Math. Review 94a:60052
- E. Levina, P.J. Bickel. Maximum likelihood estimation of intrinsic dimension. In Advances in NIPS, 17, Eds. L. K. Saul, Y. Weiss, L. Bottou (2005). Math. Review number not available
- N. Leonenko, L. Pronzato, V. Savani. A class of Renyi information estimators for multidimensional densities. Ann. Statist. 36(2008), 2153--2182. Math. Review 2010c:94013
- M. Penrose. Random Geometric Graphs. Oxford Studies in Probability 5. (2003) Oxford University Press. Math. Review 2005j:60003
- M.D. Penrose,. A central limit theorem with applications to percolation, epidemics and Boolean models. Ann. Probab. 29 (2001), 1515--1546. Math. Review 2002m:60040
- M.D. Penrose. Gaussian limits for random geometric measures. Electron. J. Probab. 12 (2007), 989--1035. Math. Review
- M.D. Penrose, J.E. Yukich. Central limit theorems for some graphs in computational geometry. Ann. Appl. Probab. 11 (2001), 1005--1041. Math. Review 2002k:60068
- M.D. Penrose, J.E. Yukich. Limit theory for random sequential packing and deposition. Ann. Appl. Probab. 12 (2002), 272--301. Math. Review 2003c:60046
- M.D. Penrose, J.E. Yukich. Weak laws of large numbers in geometric probability. Ann. Appl. Probab. 13 (2003), 277--303. Math. Review 2009b:60039
- M.D. Penrose, J.E. Yukich (2011). Limit theory for point processes in manifolds. Preprint, ArXiv:1104.0914. Math. Review number not available.
- T. Schreiber, M.D. Penrose, J.E. Yukich . Gaussian limits for multidimensional random sequential packing at saturation. Comm. Math. Phys. 272 (2007), 167--183. Math. Review 2008k:60056
- N.N. Vakhania. Elementary proof of Polya's characterization theorem and of the necessity of second moment in the CLT. Theory Probab. Appl. 38 (1993), 166--168. Math. Review 96a:60015

This work is licensed under a Creative Commons Attribution 3.0 License.