The central physical result obtained from loop quantum gravity is the evidence for a physical quantum discreteness of space at the Planck scale. This is manifested in the fact that certain operators corresponding to the measurement of geometrical quantities, in particular area and volume, have discrete spectra. According to the standard interpretation of quantum mechanics (which we adopt), this means that the theory predicts that a physical measurement of an area or a volume will yield quantized results. In particular, since the smallest eigenvalues are of Planck scale, this implies that there is no way of observing areas smaller than the Planck scale. Space comes, therefore, in “quanta” in the same manner as the energy of an oscillator. The spectra of the area and volume operators have been computed in detail in loop quantum gravity. These spectra have a complicated structure, and they constitute detailed quantitative physical predictions of loop quantum gravity on Planck-scale physics. If we had experimental access to Planck-scale physics, they would allow the theory to be empirically tested in detail.
The discreteness of area and volume is derived as follows. Consider a surface . The physical area
of
depends on the metric, namely on the gravitational field. In a quantum theory
of gravity, the gravitational field is a quantum field operator, and therefore the area of
is described by a quantum operator
. What is the quantum operator
in
nonperturbative quantum gravity? It can easily be worked out by writing the standard
expression for the area of a surface and replacing the metric with the appropriate function
of the loop variables. Promoting these loop variables to operators, we obtain the area
operator
. The precise construction of this operator requires regularizing the classical
expression and then taking the limit of a sequence of operators, in a suitable operator
topology [268
, 98
, 121, 75, 31]. For a complete presentation of the details of this construction,
see [261
, 294
]. The resulting area operator
acts as follows on a spin-network state
(assuming here for simplicity that
is a spin network without nodes on
):
Two comments are in order.
The application of loop quantum gravity to cosmology is one of it most spectacular achievements. The main result is that the initial singularity is controlled by quantum effects. The reason is not difficult to grasp. In the classical theory, the volume of the universe goes continuously to zero at the Big Bang singularity. In the quantum theory, one has transition amplitudes between finite-volume eigenvalues. The singularity is controlled by a mechanics very similar to quantum mechanism that stabilizes the orbit of an electron around the nucleus. This opens up the possibility of studying the physics of the very initial universe and also the physical evolution across the Big Bang. The region around the Big Bang is a region where spacetime enters a genuine quantum regime, which cannot be described in terms of a conventional spacetime manifold, but that can still be described by the quantum theory. For a detailed description of techniques and results of loop cosmology, see the comprehensive Living Review article by Martin Bojowald [73]. For a nice introduction see Abhay Ashtekar [20].
The same techniques applied in quantum cosmology can be utilized to study quantum spacetime in the neighborhood of the classical singularity at the center of a black hole. Again, the singularity is controlled by quantum effects. Again, the region around the classical singularity is a region in which spacetime enters a genuine quantum regime, which cannot be described in terms of a conventional spacetime manifold, but that can still be described by quantum theory [24, 204]. This opens up a new possible “paradigm” [23] for describing the final evolution of a black hole.
Indirect arguments strongly support the idea that a Schwarzschild black hole of (macroscopic) area A behaves as a thermodynamical system governed by the Bekenstein–Hawking entropy [142, 143, 68, 296]
(This derivation is based on the idea that the entropy of the black hole originates from the microstates of the horizon that correspond to a given macroscopic configuration [297, 85, 84, 58, 57]. Physical arguments indicate that the entropy of such a system is determined by an ensemble of configurations of the horizon with fixed area [253]. In quantum theory these states are finite in number and can be counted [170, 171]. Counting these microstates using loop quantum gravity yields
Loop quantum gravity is formulated in a background-independent language. Spacetime is not assumed a priori, but rather it is built up by the states of theory themselves. The relation between this formalism and the conventional formalism of quantum field theory on a given spacetime is far from obvious, and it is far from obvious how to recover low-energy quantities from the full background-independent theory. One would like, in particular, to derive the n-point functions of the theory from the background-independent formalism, in order to compare them with the standard perturbative expansion of quantum general relativity and therefore check that loop quantum gravity yields the correct low-energy limit.
The search for a way to describe the low-energy degrees of freedom, namely “the graviton” in the background-independent formulation of loop quantum gravity, has a long history [157, 158]. To appreciate the difficulty, observe that the n-point functions are intrinsically defined on a background. In fact, they express correlations among the fluctuations of the quantum field around a given background solution. How can one extract this information from the background independent theory?
A strategy for doing so has been introduced in [205]. It is based on the idea of considering a finite
region of spacetime and studying the amplitude for having given boundary states around this region.
By choosing the boundary states appropriately, one can study the physical configurations that
fluctuate around a chosen average internal geometry. In particular, one can recover quantities that
converge to the conventional n-point functions in the large-distance limit, by appropriately “adding
quanta” to the boundary state that corresponds to an average internal flat geometry. Using
this technique, a calculation of the graviton propagator has been completed in [262] to
first order and in [69] to second order. Similar calculations have been completed in three
dimensions [280]. An improved boundary state has been studied in [180]. See also [102, 202].
The calculation of the complete tensorial structure of the propagator has been recently
completed [2
].
The best possibility for testing the theory seems to be via cosmology. However, the investigation of the possibility that quantum gravity effects are observable is constantly under investigation. Various possibilities have been considered, including quantum gravitational effects on light and particle propagation at very long distances [130, 8], which could perhaps be relevant for observations in progress such as AUGER and GLAST, and others. For an overview, see for instance [277, 199].
The MAGIC telescope collaboration has recently reported the measurement of an energy-dependent time delay in the arrival of signals from the active galaxy Markarian 501. The measured phenomenological parameter governing this dependence is on the Planck scale [1]. Energy-dependent time delays in the arrival of signals from far away sources have long been suggested as possible quantum gravity effects [14, 15]. A quantum-gravity interpretation of the MAGIC observation does not appear to be likely at present (see for instance [67]), but the measurement shows that quantum-gravity effects are within the reach of current technology.
Laurent Freidel and Etera Livine have shown that the low-energy limit of quantum gravity coupled with matter in three dimensions is equivalent to a field theory on a noncommutative spacetime [116]. This is a remarkable result because it directly connects the study of noncommutative spacetimes with quantum gravity. Work is in progress to understand the extent to which the result is also meaningful in four dimensions.
http://www.livingreviews.org/lrr-2008-5 | ![]() This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 Germany License. Problems/comments to |