The causal structure of the Green’s functions is richer in curved spacetime: While in flat spacetime the
retarded Green’s function has support only on the future light cone of , in curved spacetime its support
extends inside the light cone as well;
is therefore nonzero when
, which denotes
the chronological future of
. This property reflects the fact that in curved spacetime, electromagnetic
waves propagate not just at the speed of light, but at all speeds smaller than or equal to the
speed of light; the delay is caused by an interaction between the radiation and the spacetime
curvature. A direct implication of this property is that the retarded potential at
is now
generated by the point charge during its entire history prior to the retarded time
associated
with
: The potential depends on the particle’s state of motion for all times
(see
Figure 2
).
Similar statements can be made about the advanced Green’s function and the advanced solution to the
wave equation. While in flat spacetime the advanced Green’s function has support only on the past light
cone of , in curved spacetime its support extends inside the light cone, and
is nonzero
when
, which denotes the chronological past of
. This implies that the advanced potential
at
is generated by the point charge during its entire future history following the advanced time
associated with
: The potential depends on the particle’s state of motion for all times
.
The physically relevant solution to Equation (13) is obviously the retarded potential
, and as
in flat spacetime, this diverges on the world line. The cause of this singular behaviour is still
the pointlike nature of the source, and the presence of spacetime curvature does not change
the fact that the potential diverges at the position of the particle. Once more this behaviour
makes it difficult to figure out how the retarded field is supposed to act on the particle and
determine its motion. As in flat spacetime we shall attempt to decompose the retarded solution
into a singular part that exerts no force, and a smooth radiative part that produces the entire
self-force.
To decompose the retarded Green’s function into singular and radiative parts is not a straightforward
task in curved spacetime. The flat-spacetime definition for the singular Green’s function, Equation (9),
cannot be adopted without modification: While the combination half-retarded plus half-advanced Green’s
functions does have the property of being symmetric, and while the resulting vector potential would be a
solution to Equation (13
), this candidate for the singular Green’s function would produce a self-force with
an unacceptable dependence on the particle’s future history. For suppose that we made this choice.
Then the radiative Green’s function would be given by the combination half-retarded minus
half-advanced Green’s functions, just as in flat spacetime. The resulting radiative potential
would satisfy the homogeneous wave equation, and it would be smooth on the world line, but it
would also depend on the particle’s entire history, both past (through the retarded Green’s
function) and future (through the advanced Green’s function). More precisely stated, we would
find that the radiative potential at
depends on the particle’s state of motion at all times
outside the interval
; in the limit where
approaches the world line, this
interval shrinks to nothing, and we would find that the radiative potential is generated by the
complete history of the particle. A self-force constructed from this potential would be highly
noncausal, and we are compelled to reject these definitions for the singular and radiative Green’s
functions.
The proper definitions were identified by Detweiler and Whiting [23], who proposed the following
generalization to Equation (9
):
The potential constructed from the singular Green’s function can now be seen to depend on the
particle’s state of motion at times
restricted to the interval
(see Figure 3
). Because this
potential satisfies Equation (13
), it is just as singular as the retarded potential in the vicinity of the world
line. And because the singular Green’s function is symmetric in its arguments, the singular potential can be
shown to exert no force on the charged particle. (This requires a lengthy analysis that will be presented in
the bulk of the paper.)
The Detweiler–Whiting [23] definition for the radiative Green’s function is then
From the radiative potential we form an electromagnetic field tensor , and the
curved-spacetime generalization to Equation (4
) is
http://www.livingreviews.org/lrr-2004-6 |
© Max Planck Society
Problems/comments to |