Central limit theorems for the $L^{2}$ norm of increments of local times of Lévy processes

Michael B. Marcus (City College, CUNY)
Jay S. Rosen (College of Staten Island, CUNY)

Abstract


Let $X=\{X_{t},t\in R_{+}\}$   be a symmetric Lévy process with  local time   $\{L^{ x }_{ t}\,;\,(x,t)\in R^{ 1}\times  R^{  1}_{ +}\}$. When the Lévy exponent $\psi(\lambda)$  is regularly varying at zero with   index $1<\beta\leq 2$, and satisfies some additional regularity conditions,  $$ \lim_{t\to\infty}{ \int_{-\infty}^{\infty} ( L^{ x+1}_{t}- L^{ x}_{ t})^{ 2}\,dx- E\left(\int_{-\infty}^{\infty} ( L^{ x+1}_{t}- L^{ x}_{ t})^{ 2}\,dx\right)\over t\sqrt{\psi^{-1}(1/t)}}$$ is equal in law to $$(8c_{\psi,1 })^{1/2}\left(\int_{-\infty}^{\infty} \left(L_{\beta,1}^{x}\right)^{2}\,dx\right)^{1/2}\,\eta$$ where    $L_{\beta,1}=\{L^{ x }_{\beta, 1}\,;\, x \in R^{ 1} \}$ denotes the local time, at time 1, of   a symmetric stable process with index $\beta$,   $\eta$ is a normal random variable with mean zero and variance one that is independent of $L _{ \beta,1}$, and $c_{\psi,1}$ is a known constant that depends on $\psi$.
When the Lévy exponent $\psi(\lambda)$  is regularly varying at infinity with   index $1<\beta\leq 2$ and satisfies some additional regularity conditions $$\lim_{h\to 0}\sqrt{h\psi^{2}(1/h)} \left\{ \int_{-\infty}^{\infty} ( L^{ x+h}_{1}- L^{ x}_{ 1})^{ 2}\,dx- E\left( \int_{-\infty}^{\infty} (  L^{ x+h}_{1}- L^{ x}_{ 1})^{ 2}\,dx\right)\right\}$$ is equal in law to $$(8c_{\beta,1})^{1/2}\,\,\eta\,\, \left( \int_{-\infty}^{\infty}  (L_{1}^{x})^{2}\,dx\right)^{1/2}$$ where $\eta$ is a normal random variable with mean zero and variance one that is independent of   $\{L^{ x }_{ 1},x\in R^{1}\}$, and $c_{\beta,1}$ is a known constant.


Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-111

Publication Date: January 18, 2012

DOI: 10.1214/EJP.v17-1740

References

  • Bertoin, Jean. Lévy processes. Cambridge Tracts in Mathematics, 121. Cambridge University Press, Cambridge, 1996. x+265 pp. ISBN: 0-521-56243-0 MR1406564
  • Billingsley, Patrick. Probability and measure. Second edition. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. xiv+622 pp. ISBN: 0-471-80478-9 MR0830424
  • Bingham, N. H.; Goldie, C. M.; Teugels, J. L. Regular variation. Encyclopedia of Mathematics and its Applications, 27. Cambridge University Press, Cambridge, 1987. xx+491 pp. ISBN: 0-521-30787-2 MR0898871
  • Chen, Xia; Li, Wenbo V.; Marcus, Michael B.; Rosen, Jay. A CLT for the $L^ 2$ modulus of continuity of Brownian local time. Ann. Probab. 38 (2010), no. 1, 396--438. MR2599604
  • Chen, Xia; Li, Wenbo V.; Rosen, Jay. Large deviations for local times of stable processes and stable random walks in 1 dimension. Electron. J. Probab. 10 (2005), no. 16, 577--608 (electronic). MR2147318
  • Dobrušin, R. L. Two limit theorems for the simplest random walk on a line. (Russian) Uspehi Mat. Nauk (N.S.) 10 (1955), no. 3(65), 139--146. MR0071662
  • Feller, William. An introduction to probability theory and its applications. Vol. II. Second edition John Wiley & Sons, Inc., New York-London-Sydney 1971 xxiv+669 pp. MR0270403
  • van der Hofstad, Remco; König, Wolfgang. A survey of one-dimensional random polymers. J. Statist. Phys. 103 (2001), no. 5-6, 915--944. MR1851362
  • van der Hofstad, Remco; Klenke, Achim; König, Wolfgang. The critical attractive random polymer in dimension one. J. Statist. Phys. 106 (2002), no. 3-4, 477--520. MR1884542
  • Le Gall, Jean-François; Rosen, Jay. The range of stable random walks. Ann. Probab. 19 (1991), no. 2, 650--705. MR1106281
  • Marcus, Michael B.; Rosen, Jay. Markov processes, Gaussian processes, and local times. Cambridge Studies in Advanced Mathematics, 100. Cambridge University Press, Cambridge, 2006. x+620 pp. ISBN: 978-0-521-86300-1; 0-521-86300-7 MR2250510
  • Marcus, Michael B.; Rosen, Jay. $L^ p$ moduli of continuity of Gaussian processes and local times of symmetric Lévy processes. Ann. Probab. 36 (2008), no. 2, 594--622. MR2393991
  • Marcus, Michael B.; Rosen, Jay. Laws of the iterated logarithm for the local times of symmetric Levy processes and recurrent random walks. Ann. Probab. 22 (1994), no. 2, 626--658. MR1288125
  • Marcus, Michael B.; Rosen, Jay. Laws of the iterated logarithm for the local times of recurrent random walks on ${\bf Z}^ 2$ and of Lévy processes and random walks in the domain of attraction of Cauchy random variables. Ann. Inst. H. Poincaré Probab. Statist. 30 (1994), no. 3, 467--499. MR1288360
  • D. Revuz and M. Yor,, Continuous martingales and Brownian motion, Springer, Berlin, 1998.
  • P. Révész, Random walk in random and non-random environments, World Scientific, Teaneck, NJ, 1990.
  • Rosen, Jay. Second order limit laws for the local times of stable processes. Séminaire de Probabilités, XXV, 407--424, Lecture Notes in Math., 1485, Springer, Berlin, 1991. MR1187796
  • Rosen, Jay. A stochastic calculus proof of the CLT for the $L^ 2$ modulus of continuity of local time. Séminaire de Probabilités XLIII, 95--104, Lecture Notes in Math., 2006, Springer, Berlin, 2011. MR2790369
  • Yor, Marc. Le drap brownien comme limite en loi de temps locaux linéaires. (French) [The Brownian sheet as a limit in law of linear local times] Seminar on probability, XVII, 89--105, Lecture Notes in Math., 986, Springer, Berlin, 1983. MR0770400


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.