The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Brenier, Yann. Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44 (1991), no. 4, 375--417. MR1100809
  • Cuesta-Albertos, J. A.; Rüschendorf, L.; Tuero-Díaz, A. Optimal coupling of multivariate distributions and stochastic processes. J. Multivariate Anal. 46 (1993), no. 2, 335--361. MR1240428
  • Delanoë, Philippe; Ge, Yuxin. Regularity of optimal transport on compact, locally nearly spherical, manifolds. J. Reine Angew. Math. 646 (2010), 65--115. MR2719556
  • Feyel, Denis; Üstünel, Ali Süleyman. Measure transport on Wiener space and the Girsanov theorem. C. R. Math. Acad. Sci. Paris 334 (2002), no. 11, 1025--1028. MR1913729
  • Feyel, D.; Üstünel, A. S. Monge-Kantorovitch measure transportation and Monge-Ampère equation on Wiener space. Probab. Theory Related Fields 128 (2004), no. 3, 347--385. MR2036490
  • A. Figalli, Y.-H. Kim, and R. J. McCann. When is multidimensional screening a convex program? To appear in: phJ. Econom. Theory, Preprint: arXiv: 0912.3033, 2010.
  • Figalli, Alessio; Rifford, Ludovic. Continuity of optimal transport maps and convexity of injectivity domains on small deformations of $\Bbb S^ 2$. Comm. Pure Appl. Math. 62 (2009), no. 12, 1670--1706. MR2569074
  • Figalli, Alessio; Rifford, Ludovic; Villani, Cédric. On the Ma-Trudinger-Wang curvature on surfaces. Calc. Var. Partial Differential Equations 39 (2010), no. 3-4, 307--332. MR2729302
  • Gangbo, Wilfrid; McCann, Robert J. The geometry of optimal transportation. Acta Math. 177 (1996), no. 2, 113--161. MR1440931
  • Gray, Robert M.; Neuhoff, David L.; Shields, Paul C. A generalization of Ornstein's $\bar d$ distance with applications to information theory. Ann. Probability 3 (1975), 315--328. MR0368127
  • Y. H. Kim and R. J. McCann. Towards the smoothness of optimal maps on Riemmanian submersions and Riemannian products (of round spheres in particular). To appear in: phJ. Reine Angew. Math., Preprint; arXiv:0806.0351v1, 2008.
  • Ma, Xi-Nan; Trudinger, Neil S.; Wang, Xu-Jia. Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal. 177 (2005), no. 2, 151--183. MR2188047
  • McCann, Robert J. Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11 (2001), no. 3, 589--608. MR1844080
  • Ornstein, Donald S. An application of ergodic theory to probability theory. Ann. Probability 1 (1973), no. 1, 43--65. MR0348831
  • S. T. Rachev and L. Rüschendorf. Mass Transportation Problems. Vol. 1: Theory. Vol. 2: Applications. Springer, 1998.
  • Rüschendorf, Ludger. Fréchet-bounds and their applications. Advances in probability distributions with given marginals (Rome, 1990), 151--187, Math. Appl., 67, Kluwer Acad. Publ., Dordrecht, 1991. MR1215951
  • Rüschendorf, L. Optimal solutions of multivariate coupling problems. Appl. Math. (Warsaw) 23 (1995), no. 3, 325--338. MR1360058
  • Rüschendorf, L.; Rachev, S. T. A characterization of random variables with minimum $L^ 2$-distance. J. Multivariate Anal. 32 (1990), no. 1, 48--54. MR1035606
  • T. Sei. Parametric modeling based on the gradient maps of convex functions. To appear in: phAnnals of the Institute of Statistical Mathematics with changed title: Gradient modeling for multivariate quantitative data; Preprint:, 2006.
  • T. Sei. A structural model on a hypercube represented by optimal transport. To appear in: phStatistica Sinica, Preprint: arXiv: 0901.4715, 2010a.
  • T. Sei. Structural gradient model for time series. phProceedings of the International Symposium on Statistical Analysis of Spatio-Temporal Data, November 4--6, 2010, Kamakura, Japan, 2010b.
  • T. Sei. A Jacobian inequality for gradient maps on the sphere and its application to directional statistics. To appear in: phCommunications in Statistics -- Theory and Methods, Preprint: arXiv: 0906.0874, 2010c.
  • Üstünel, Ali Süleyman. Estimation for the additive Gaussian channel and Monge-Kantorovitch measure transportation. Stochastic Process. Appl. 117 (2007), no. 9, 1316--1329. MR2343942
  • Villani, Cédric. Topics in optimal transportation. Graduate Studies in Mathematics, 58. American Mathematical Society, Providence, RI, 2003. xvi+370 pp. ISBN: 0-8218-3312-X MR1964483
  • Villani, Cédric. Optimal transport. Old and new. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338. Springer-Verlag, Berlin, 2009. xxii+973 pp. ISBN: 978-3-540-71049-3 MR2459454

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.