A Berry-Esseen bound for the uniform multinomial occupancy model

Jay Bartroff (University of Southern California)
Larry Goldstein (University of Southern California)

Abstract


The inductive size bias coupling technique and Stein's method yield a Berry-Esseen theorem for the number of urns having occupancy $d \geq 2$ when $n$ balls are uniformly distributed over $m$ urns. In particular, there exists a constant $C$ depending only on $d$ such that$$\sup_{z \in \mathbb{R}}\left|P\left( W_{n,m} \le z \right) -P(Z \le z)\right| \le C \frac{\sigma_{n,m}}{1+(\frac{n}{m})^3} \quad\mbox{for all $n \ge d$ and $m \ge 2$,}$$where $W_{n,m}$ and $\sigma_{n,m}^2$ are the standardized count and variance, respectively, of the number of urns with $d$ balls, and $Z$ is a standard normal random variable. Asymptotically, the bound is optimal up to constants if $n$ and $m$ tend to infinity together in a way such that $n/m$ stays bounded.


Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-29

Publication Date: February 17, 2013

DOI: 10.1214/EJP.v18-1983

References

  • Baldi, P.; Rinott, Y.; Stein, C. A normal approximation for the number of local maxima of a random function on a graph. Probability, statistics, and mathematics, 59--81, Academic Press, Boston, MA, 1989. MR1031278
  • Barbour, A. D.; Gnedin, A. V. Small counts in the infinite occupancy scheme. Electron. J. Probab. 14 (2009), no. 13, 365--384. MR2480545
  • Barbour, A. D.; Holst, Lars; Janson, Svante. Poisson approximation. Oxford Studies in Probability, 2. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1992. x+277 pp. ISBN: 0-19-852235-5 MR1163825
  • Barbour, A. D.; Karoński, Michał; Ruciński, Andrzej. A central limit theorem for decomposable random variables with applications to random graphs. J. Combin. Theory Ser. B 47 (1989), no. 2, 125--145. MR1047781
  • Bollobás, Béla. Random graphs. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1985. xvi+447 pp. ISBN: 0-12-111755-3; 0-12-111756-1 MR0809996
  • Bolthausen, E. An estimate of the remainder in a combinatorial central limit theorem. Z. Wahrsch. Verw. Gebiete 66 (1984), no. 3, 379--386. MR0751577
  • Chao, Anne; Yip, Paul; Lin, Huey-Shyan. Estimating the number of species via a martingale estimating function. Statist. Sinica 6 (1996), no. 2, 403--418. MR1399311
  • Chen, L. H. Y., Goldstein, L. and Shao, Q.-M. (2010). Normal approximation by Stein's method. Springer Verlag.
  • Chen, Louis H. Y.; Shao, Qi-Man. Normal approximation under local dependence. Ann. Probab. 32 (2004), no. 3A, 1985--2028. MR2073183
  • Chen, L.H. Y. and Röllin, A. (2010). Stein couplings for Normal Approximation. Preprint http://arxiv.org/abs/1003.6039
  • Efron, B.; Stein, C. The jackknife estimate of variance. Ann. Statist. 9 (1981), no. 3, 586--596. MR0615434
  • Efron, B. and Thisted, R. (1976). Estimating the Number of Unseen Species: How Many Words Did Shakespeare Know? phBiometrika 63: 435--448.
  • Englund, Gunnar. A remainder term estimate for the normal approximation in classical occupancy. Ann. Probab. 9 (1981), no. 4, 684--692. MR0624696
  • Erdős, P.; Rényi, A. On random graphs. I. Publ. Math. Debrecen 6 1959 290--297. MR0120167
  • Gnedin, Alexander; Hansen, Ben; Pitman, Jim. Notes on the occupancy problem with infinitely many boxes: general asymptotics and power laws. Probab. Surv. 4 (2007), 146--171. MR2318403
  • Goldstein, Larry. Berry-Esseen bounds for combinatorial central limit theorems and pattern occurrences, using zero and size biasing. J. Appl. Probab. 42 (2005), no. 3, 661--683. MR2157512
  • Goldstein, L. (2012). A Berry-Esseen bound with applications to vertex degree counts in the Erdös-Rényi random graph Ann. Appl. Probab. to appear
  • Goldstein, Larry; Penrose, Mathew D. Normal approximation for coverage models over binomial point processes. Ann. Appl. Probab. 20 (2010), no. 2, 696--721. MR2650046
  • Goldstein, Larry; Reinert, Gesine. Zero biasing in one and higher dimensions, and applications. Stein's method and applications, 1--18, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 5, Singapore Univ. Press, Singapore, 2005. MR2201883
  • Goldstein, Larry; Rinott, Yosef. Multivariate normal approximations by Stein's method and size bias couplings. J. Appl. Probab. 33 (1996), no. 1, 1--17. MR1371949
  • Goldstein, Larry; Zhang, Haimeng. A Berry-Esseen bound for the lightbulb process. Adv. in Appl. Probab. 43 (2011), no. 3, 875--898. MR2858224
  • Hoeffding, Wassily. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 1963 13--30. MR0144363
  • Hwang, Hsien-Kuei; Janson, Svante. Local limit theorems for finite and infinite urn models. Ann. Probab. 36 (2008), no. 3, 992--1022. MR2408581
  • Janson, Svante; Nowicki, Krzysztof. The asymptotic distributions of generalized $U$-statistics with applications to random graphs. Probab. Theory Related Fields 90 (1991), no. 3, 341--375. MR1133371
  • Johnson, Norman L.; Kotz, Samuel. Urn models and their application. An approach to modern discrete probability theory. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York-London-Sydney, 1977. xiii+402 pp. MR0488211
  • Karlin, Samuel. Central limit theorems for certain infinite urn schemes. J. Math. Mech. 17 1967 373--401. MR0216548
  • Karoński, Michał; Ruciński, Andrzej. Poisson convergence and semi-induced properties of random graphs. Math. Proc. Cambridge Philos. Soc. 101 (1987), no. 2, 291--300. MR0870602
  • Kolchin, Valentin F.; Sevastʹyanov, Boris A.; Chistyakov, Vladimir P. Random allocations. Translated from the Russian. Translation edited by A. V. Balakrishnan. Scripta Series in Mathematics. V. H. Winston & Sons, Washington, D.C.; distributed by Halsted Press [John Wiley & Sons], New York-Toronto, Ont.-London, 1978. xi+262 pp. ISBN: 0-470-99394-4 MR0471016
  • Kordecki, Wojciech. Normal approximation and isolated vertices in random graphs. Random graphs '87 (Poznań, 1987), 131--139, Wiley, Chichester, 1990. MR1094128
  • Palka, Zbigniew. On the number of vertices of given degree in a random graph. J. Graph Theory 8 (1984), no. 1, 167--170. MR0732030
  • Penrose, Mathew D. Normal approximation for isolated balls in an urn allocation model. Electron. J. Probab. 14 (2009), no. 74, 2156--2181. MR2550296
  • Quine, M. P.; Robinson, J. Normal approximations to sums of scores based on occupancy numbers. Ann. Probab. 12 (1984), no. 3, 794--804. MR0744234
  • Riordan, J. (1937) Moment Recurrence Relations for Binomial, Poisson and Hypergeometric Frequency Distributions Ann. Math. Statist. 8(2):103--111.
  • Robbins, Herbert E. Estimating the total probability of the unobserved outcomes of an experiment. Ann. Math. Statist. 39 1968 256--257. MR0221695
  • Starr, Norman. Linear estimation of the probability of discovering a new species. Ann. Statist. 7 (1979), no. 3, 644--652. MR0527498
  • Stein, Charles. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory, pp. 583--602. Univ. California Press, Berkeley, Calif., 1972. MR0402873
  • Stein, Charles. Approximate computation of expectations. Institute of Mathematical Statistics Lecture Notes—Monograph Series, 7. Institute of Mathematical Statistics, Hayward, CA, 1986. iv+164 pp. ISBN: 0-940600-08-0 MR0882007
  • Thisted, Ronald; Efron, Bradley. Did Shakespeare write a newly-discovered poem? Biometrika 74 (1987), no. 3, 445--455. MR0909350


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.