Download this PDF file Fullscreen Fullscreen Off
References
- Borgs, C.; Chayes, J. T.; Randall, D. The van den Berg-Kesten-Reimer inequality: a review. Perplexing problems in probability, 159-173, Progr. Probab., 44, Birkhäuser Boston, Boston, MA, 1999. MR1703130
- Grimmett, G. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6 MR1707339
- Jonasson, J. The BK inequality for pivotal sampling a.k.a. the Srinivasan sampling process, Electron. Comm. Probab. 18 (2013), no. 35, 1-6 (electronic). DOI:10.1214/ECP.v18-2045
- Lyons, R. Determinantal probability measures. Publ. Math. Inst. Hautes Études Sci. No. 98 (2003), 167-212. MR2031202
- Reimer, D. Proof of the van den Berg-Kesten conjecture. Combin. Probab. Comput. 9 (2000), no. 1, 27-32. MR1751301
- van den Berg, J.; Fiebig, U. On a combinatorial conjecture concerning disjoint occurrences of events. Ann. Probab. 15 (1987), no. 1, 354-374. MR0877608
- van den Berg, J.; Gandolfi, A. BK-type inequalities and generalized random-cluster representations. Probab. Theory Related Fields 157 (2013), no. 1-2, 157-181. MR3101843
- van den Berg, J.; Jonasson, J. A BK inequality for randomly drawn subsets of fixed size. Probab. Theory Related Fields 154 (2012), no. 3-4, 835-844. MR3000563
- van den Berg, J.; Kesten, H. Inequalities with applications to percolation and reliability. J. Appl. Probab. 22 (1985), no. 3, 556-569. MR0799280

This work is licensed under a Creative Commons Attribution 3.0 License.