The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Handbook of mathematical functions with formulas, graphs, and mathematical tables. Edited by Milton Abramowitz and Irene A. Stegun. Reprint of the 1972 edition. Dover Publications, Inc., New York, 1992. xiv+1046 pp. ISBN: 0-486-61272-4 MR1225604
  • Arnold, Ludwig; Kleimann, Wolfgang. Qualitative theory of stochastic systems. Probabilistic analysis and related topics, Vol. 3, 1--79, Academic Press, New York, 1983. MR0748853
  • Barlow, M. T.; Nualart, D. Lectures on probability theory and statistics. Lectures from the 25th Saint-Flour Summer School held July 10–26, 1995. Edited by P. Bernard. Lecture Notes in Mathematics, 1690. Springer-Verlag, Berlin, 1998. viii+227 pp. ISBN: 3-540-64620-5 MR1668107
  • Bass, Richard F. Diffusions and elliptic operators. Probability and its Applications (New York). Springer-Verlag, New York, 1998. xiv+232 pp. ISBN: 0-387-98315-5 MR1483890
  • Bell, Denis R. Degenerate stochastic differential equations and hypoellipticity. Pitman Monographs and Surveys in Pure and Applied Mathematics, 79. Longman, Harlow, 1995. xii+114 pp. ISBN: 0-582-24689-X MR1471702
  • Bell, Denis R. Stochastic differential equations and hypoelliptic operators. Real and stochastic analysis, 9--42, Trends Math., Birkhäuser Boston, Boston, MA, 2004. MR2090751
  • Ben Arous, G.; Léandre, R. Décroissance exponentielle du noyau de la chaleur sur la diagonale. I. (French) [Exponential decay of the heat kernel on the diagonal. I] Probab. Theory Related Fields 90 (1991), no. 2, 175--202. MR1128069
  • Ben Arous, G.; Léandre, R. Décroissance exponentielle du noyau de la chaleur sur la diagonale. II. (French) [Exponential decay of the heat kernel on the diagonal. II] Probab. Theory Related Fields 90 (1991), no. 3, 377--402. MR1133372
  • Bender, Carl M.; Orszag, Steven A. Advanced mathematical methods for scientists and engineers. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York, 1978. xiv+593 pp. ISBN: 0-07-004452-X MR0538168
  • Birrell, Jeremiah; Herzog, David P.; Wehr, Jan. The transition from ergodic to explosive behavior in a family of stochastic differential equations. Stochastic Process. Appl. 122 (2012), no. 4, 1519--1539. MR2914761
  • Boďová, Katarína; Doering, Charles R. Noise-induced statistically stable oscillations in a deterministically divergent nonlinear dynamical system. Commun. Math. Sci. 10 (2012), no. 1, 137--157. MR2901305
  • B. Cooke, J. C. Mattingly, S. A. McKinley, and S. C. Schmidler, phGeometric Ergodicity of Two--dimensional Hamiltonian systems with a Lennard--Jones--like Repulsive Potential, ArXiv e-prints (2011).
  • Douc, Randal; Fort, Gersende; Guillin, Arnaud. Subgeometric rates of convergence of $f$-ergodic strong Markov processes. Stochastic Process. Appl. 119 (2009), no. 3, 897--923. MR2499863
  • Dupuis, Paul; Williams, Ruth J. Lyapunov functions for semimartingale reflecting Brownian motions. Ann. Probab. 22 (1994), no. 2, 680--702. MR1288127
  • Fort, Gersende; Meyn, Sean; Moulines, Eric; Priouret, Pierre. The ODE method for stability of skip-free Markov chains with applications to MCMC. Ann. Appl. Probab. 18 (2008), no. 2, 664--707. MR2399709
  • Gawȩdzki, Krzysztof; Herzog, David P.; Wehr, Jan. Ergodic properties of a model for turbulent dispersion of inertial particles. Comm. Math. Phys. 308 (2011), no. 1, 49--80. MR2842970
  • Gitterman, Moshe. The noisy oscillator. The first hundred years, from Einstein until now. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. xiv+144 pp. ISBN: 981-256-512-4 MR2313138
  • Hairer, Martin; Mattingly, Jonathan C. Yet another look at Harris' ergodic theorem for Markov chains. Seminar on Stochastic Analysis, Random Fields and Applications VI, 109--117, Progr. Probab., 63, Birkhäuser/Springer Basel AG, Basel, 2011. MR2857021
  • Martin Hairer, phP@W course on the convergence of markov processes,, 2010.
  • Hairer, Martin; Mattingly, Jonathan C. Slow energy dissipation in anharmonic oscillator chains. Comm. Pure Appl. Math. 62 (2009), no. 8, 999--1032. MR2531551
  • Harris, T. E. The existence of stationary measures for certain Markov processes. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. II, pp. 113--124. University of California Press, Berkeley and Los Angeles, 1956. MR0084889
  • Hasʹminskiĭ, R. Z. Stochastic stability of differential equations. Translated from the Russian by D. Louvish. Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, 7. Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980. xvi+344 pp. ISBN: 90-286-0100-7 MR0600653
  • Huang, Jianyi; Kontoyiannis, Ioannis; Meyn, Sean P. The ODE method and spectral theory of Markov operators. Stochastic theory and control (Lawrence, KS, 2001), 205--221, Lecture Notes in Control and Inform. Sci., 280, Springer, Berlin, 2002. MR1931654
  • Mattingly, Jonathan C.; McKinley, Scott A.; Pillai, Natesh S. Geometric ergodicity of a bead–spring pair with stochastic Stokes forcing. Stochastic Process. Appl. 122 (2012), no. 12, 3953--3979. MR2971721
  • Mattingly, J. C.; Stuart, A. M.; Higham, D. J. Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stochastic Process. Appl. 101 (2002), no. 2, 185--232. MR1931266
  • Meyn, S. P.; Tweedie, R. L. Markov chains and stochastic stability. Communications and Control Engineering Series. Springer-Verlag London, Ltd., London, 1993. xvi+ 548 pp. ISBN: 3-540-19832-6 MR1287609
  • Meyn, Sean. Control techniques for complex networks. Cambridge University Press, Cambridge, 2008. xx+562 pp. ISBN: 978-0-521-88441-9 MR2372453
  • Scheutzow, M. Stabilization and destabilization by noise in the plane. Stochastic Anal. Appl. 11 (1993), no. 1, 97--113. MR1202675
  • Veretennikov, A. Yu. On polynomial mixing bounds for stochastic differential equations. Stochastic Process. Appl. 70 (1997), no. 1, 115--127. MR1472961
  • Veretennikov, A. Yu. On polynomial mixing and the rate of convergence for stochastic differential and difference equations. (Russian) Teor. Veroyatnost. i Primenen. 44 (1999), no. 2, 312--327; translation in Theory Probab. Appl. 44 (2000), no. 2, 361--374 MR1751475
  • White, Roscoe B. Asymptotic analysis of differential equations. Revised edition. Imperial College Press, London, 2010. xxiv+405 pp. ISBN: 978-1-84816-608-0; 1-84816-608-7 MR2724458

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.