Eigenvalue Expansions for Brownian Motion with an Application to Occupation Times

Richard F. Bass (University of Washington)
Krzysztof Burdzy (University of Washington)

Abstract


Let $B$ be a Borel subset of $R^d$ with finite volume. We give an eigenvalue expansion for the transition densities of Brownian motion killed on exiting $B$. Let $A_1$ be the time spent by Brownian motion in a closed cone with vertex $0$ until time one. We show that $\lim_{u\to 0} \log P^0(A_1 < u) /\log u = 1/\xi$ where $\xi$ is defined in terms of the first eigenvalue of the Laplacian in a compact domain. Eigenvalues of the Laplacian in open and closed sets are compared.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-19

Publication Date: January 31, 1996

DOI: 10.1214/EJP.v1-3

Supplementary Files

Authors' Comments (1KB)
Correction (pdf) (77KB)
Correction (ps) (22KB)


References

  1. R.F. Bass, Probabilistic Techniques in Analysis, Springer, New York (1995) Math. Review not available.
  2. N.H. Bingham and R.A. Doney, On higher-dimensional analogues of the arc-sine law, J. Appl. Probab. 25, (1988) 120--131. Math. Review 89g:60249
  3. R.M. Blumenthal and R.K. Getoor, Markov Processes and Potential Theory, Academic Press, New York (1968) Math. Review 41:9348
  4. F. Gesztesy and Z. Zhao, Domain perturbations, Brownian motion, capacities, and ground states of Dirichlet Schr"odinger operators, Math. Z. 215, (1994), 143--150. Math. Review 95g:60098
  5. M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space. Amer. Math. Soc. Sel. Transl. Ser. 1 10, (1962) 199--325. Math Review not available
  6. J.-F. Le Gall, Mouvement brownien, c^ones et processus stables, Prob. Th. Rel. Fields 76, (1987) 587--627. Math. Review 89b:60193
  7. T. Meyre, Etude asymptotique du temps pass'e par le mouvement brownien dans un c^one, Ann. Inst. Henri Poincar'e 27, (1991) 107--124. Math. Review 92e:60157
  8. T. Meyre and W. Werner, On the occupation times of cones by Brownian motion, Probab. Theory Rel. Fields 101, (1995) 409--419. Math. Review not available.
  9. S.C. Port and C.J. Stone, Brownian Motion and Classical Potential Theory, Academic Press, New York (1978) Math. Review 58:11459
  10. F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar, New York (1955) Math Review not available
  11. M. van den Berg, On the spectrum of the Dirichlet Laplacian for horn-shaped regions in $R^n$ with infinite volume, J.~Functl. Anal. 58, (1984) 150--156. Math. Review 85h:35155


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.