Download this PDF file Fullscreen Fullscreen Off
References
- P. Antal, A. Pisztora. On the chemical distance for supercritical bernoulli percolation. Ann. Probab. 24 (1996), 1036--1048. Math. Review 98b:60168
- M.T. Barlow. Random walks on supercritical percolation clusters. Ann. Probab. 32 (2004), 3024--3084. Math. Review 2006e:60146
- M.T. Barlow, R.F. Bass, Z.-Q. Chen, M. Kassmann. Non-local Dirichlet Forms and Symmetric Jump Processes. To appear Trans. Amer. Math. Soc. Math. Review number not available.
- M.T. Barlow, R.F. Bass, T. Kumagai. Parabolic Harnack inequality and heat kernel estimates for random walks with long range jumps. To appear Math. Zeitschrift. Math. Review number not available.
- R.F. Bass. On Aronsen's upper bounds for heat kernels. Bull. London Math. Soc. 34 (2002), 415--419. Math. Review 2003c:35054
- bibitem {BLS} I. Benjamini, R. Lyons, O. Schramm. Percolation perturbations in potential theory and random walks. In: Random walks and discrete potential theory (Cortona, 1997), 56--84, Sympos. Math., XXXIX, Cambridge Univ. Press, Cambridge, 1999. Math. Review 2002f:60185
- N. Berger, M. Biskup. Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Rel. Fields 137 (2007), 83--120. Math. Review 2002f:60185
- N. Berger, M. Biskup, C.E. Hoffman, G. Kozma. Anomalous heat-kernel decay for random walk amoung bounded random conductances. Ann. Inst. Henri Poincar'e. 44 (2008), 374-392. Math. Review not yet available
- M. Biskup, T.M. Prescott. Functional CLT for random walk among bounded random conductances. Electron. J. Probab. 12 (2007), 1323--1348 Math. Review not yet available
- R.M Blumenthal and R.K. Getoor. Markov Processes and Potential Theory. Academic Press, Reading, MA, 1968. Math. Review 41 #9348
- O. Couronn'e, R.J. Messikh. Surface order large deviations for 2D FK-percolation and Potts models. Stoch. Proc. Appl. 113 (2004), 81--99. Math. Review 2005e:60058
- P.G. de Gennes. La percolation: un concept unificateur. La Recherche 7 (1976), 919--927. Math. Review number not available
- T. Delmotte. Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Math. Iberoamericana 15 (1999), 181--232. Math. Review 2000b:35103
- A. De Masi, P.A. Ferrari, S. Goldstein, W.D. Wick. An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Statist. Phys. 55 (1989), 787--855. Math. Review 91e:60107
- J.-D. Deuschel, A. Pisztora. Surface order large deviations for high-density percolation. Probab. Theory Related Fields 104 (1996), 467--482. Math. Review 97d:60053
- E.B. Fabes, D.W. Stroock. A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash. Arch. Mech. Rat. Anal. 96 (1986), 327--338. Math. Review 88b:35037
- W. Feller. An introduction to probability theory and its applications. Vol. II}. 2nd ed. Wiley, New York-London-Sydney, 1971. Math. Review 42 #5292
- G.R. Grimmett. Percolation. (2nd edition). Springer, 1999. Math. Review 2001a:60114
- A. Maritan. About diffusion processes in disordered systems. J. Phys. A: Math. Gen. 21 (1988) 859--863. Math. Review number not available.
- P. Mathieu, E. Remy. Isoperimetry and heat kernel decay on percolation clusters. Ann. Probab. 32 (2004), 100--128. Math. Review 2005e:60233
- P. Mathieu, A. Piatnitski. Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 (2007), 2287--2307. Math. Review 2008e:82033
- P. Mathieu. Quenched invariance principles for random walks with random conductances. J. of Stat. Phys., 130, (2008) 1025-1046. Math. Review number not available yet
-
J. Nash. Continuity of solutions of parabolic and elliptic
equations. Amer. J. Math. 80 (1958), 931--954. Math. Review
20 #6592
- L. Saloff-Coste. Aspects of Sobolev-type inequalities. Cambridge Univ. Press 2002. Math. Review 2003c:46048
- V. Sidoravicius and A.-S. Sznitman. Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Rel. Fields 129 (2004), 219--244. Math. Review 2005d:60155

This work is licensed under a Creative Commons Attribution 3.0 License.