Download this PDF file Fullscreen Fullscreen Off
References
- Bentkus, V. A Lyapunov type bound in $Rsp d$. Teor. Veroyatn. Primen. 49 (2004), no. 2, 400--410; translation in Theory Probab. Appl. 49 (2005), no. 2, 311--323 MR2144310 (2006f:60018)
- Bingham, N. H.; Goldie, C. M.; Teugels, J. L. Regular variation.Encyclopedia of Mathematics and its Applications, 27. Cambridge University Press, Cambridge, 1987. xx+491 pp. ISBN: 0-521-30787-2 MR0898871 (88i:26004)
- Bogachev, Leonid V.; Gnedin, Alexander V.; Yakubovich, Yuri V. On the variance of the number of occupied boxes. Adv. in Appl. Math. 40 (2008), no. 4, 401--432. MR2412154
- Le Cam, Lucien. An approximation theorem for the Poisson binomial distribution. Pacific J. Math. 10 1960 1181--1197. MR0142174 (25 #5567)
- Chung, Fan; Lu, Linyuan. Concentration inequalities and martingale inequalities: a survey. Internet Math. 3 (2006), no. 1, 79--127. MR2283885 (2008j:60049)
- Gnedin, Alexander; Hansen, Ben; Pitman, Jim. Notes on the occupancy problem with infinitely many boxes: general asymptotics and power laws. Probab. Surv. 4 (2007), 146--171 (electronic). MR2318403 (2008g:60056)
- Hwang, Hsien-Kuei; Janson, Svante. Local limit theorems for finite and infinite urn models. Ann. Probab. 36 (2008), no. 3, 992--1022. MR2408581
- Karlin, Samuel. Central limit theorems for certain infinite urn schemes. J. Math. Mech. 17 1967 373--401. MR0216548 (35 #7379)
- Lamperti, John. An occupation time theorem for a class of stochastic processes. Trans. Amer. Math. Soc. 88 1958 380--387. MR0094863 (20 #1372)
- Louchard, Guy; Prodinger, Helmut; Ward, Mark Daniel. The number of distinct values of some multiplicity in sequences of geometrically distributed random variables. 2005 International Conference on Analysis of Algorithms, 231--256 (electronic), Discrete Math. Theor. Comput. Sci. Proc., AD, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2005. MR2193122
- Michel, R. Poisson approximation of a nearly homogeneous portfolio. ASTIN Bulletin 17 1988 165--169.
- Mikhaĭlov, V. G. The central limit theorem for a scheme of independent allocation of particles by cells.(Russian) Number theory, mathematical analysis and their applications. Trudy Mat. Inst. Steklov. 157 (1981), 138--152, 236. MR0651763 (83f:60022)

This work is licensed under a Creative Commons Attribution 3.0 License.