Download this PDF file Fullscreen Fullscreen Off
References
- S. Aida. Notes on proofs of continuity theorem in rough path analysis. Preprint of Osaka University (2006). Math. Review number not available.
- M. Caruana. Itô-Stratonovich equations with C1+ε coefficients have rough path solutions almost surely. Preprint, 2005. Math. Review number not available.
- L. Coutin, P. Friz and N. Victoir. Good rough path sequences and applications to anticipating & fractional stochastic calculus. Ann. Probab., 35:3 (2007) 1171-1193. Math. Review 2008e:60171.
- L. Coutin and A. Lejay. Semi-martingales and rough paths theory. Electron. J. Probab., 10:23 (2005), 761-785. Math. Review 2006i:60042.
- A.M. Davie. Differential equations driven by rough signals: an approach via discrete approximation. Appl. Math. Res. Express. AMRX, 2 (2007), Art. ID abm009, 40. Math. Review 2387018.
- P. Friz and N. Victoir. Euler estimates of rough differential equations. J. Differential Equations, 244:2 (2008), 388-412. Math. Review 2376201.
- P. Friz and N. Victoir. Multidimensional stochastic processes as rough paths. Theory and applications, Cambrigde University Press, 2009. Math. Review number not available.
- Y. Inahama and H. Kawabi. Asymptotic expansions for the Laplace approximations for Itô functionals of Brownian rough paths. J. Funct. Anal., 243:1 (2007), 270-322. Math. Review 2008b:60130.
- Y. Inahama. A stochastic Taylor-like expansion in the rough path theory. Preprint from Tokyo Institute of Technology, no. 02-07, 2007. Math. Review number not available.
- A. Lejay and N. Victoir. On (p,q)-rough paths. J. Differential Equations, 225:1 (2006), 103-133. Math. Review 2007i:60069.
- A. Lejay. An introduction to rough paths, Séminaire de probabilités, XXXVII, 1-59, Lecture Notes in Mathematics 1832, Springer-Verlag, 2003. Math. Review 2005e:60120.
- A. Lejay. Yet another introduction to rough paths. To appear in Séminaire de probabilités, Lecture Notes in Mathematics, Springer-Verlag, 2009. Math. Review number not available.
- A. Lejay. Stochastic differential equations driven by processes generated by divergence form operators II: convergence results. ESAIM Probab. Stat., 12 (2008), 387-411. Math. Review 2437716.
- T. Lyons, M. Caruana and T. Lévy. Differential equations driven by rough paths, École d'été des probabilités de saint-flour XXXIV, 2004 (J. Picard ed.), Lecture Notes in Mathematics 1908, Springer-Verlag, 2007. Math. Review 2314753.
- T. Lyons and Z. Qian. Flow of diffeomorphisms induced by a geometric multiplicative functional. Probab. Theory Related Fields, 112:1 (1998), 91-119. Math. Review 99k:60153.
- T. Lyons and Z. Qian. System control and rough paths. Oxford Mathematical Monographs, Oxford University Press, 2002. Math. Review 2005f:93001.
- T.J. Lyons. Differential equations driven by rough signals. Rev. Mat. Iberoamericana, 14:2 (1998), 215-310. Math. Review 2000c:60089.
- G. Pagès and A. Sellami. Convergence of multi-dimensional quantized SDE's. Preprint of University Paris 6, 2008. Available at arXiv:0801.0726. Math. Review number not available.

This work is licensed under a Creative Commons Attribution 3.0 License.