Download this PDF file Fullscreen Fullscreen Off
References
- A. Baddeley. Spatial point processes and their applications. Stochastic geometry. Vol. 1892 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2007. pp. 1--75. Math. Review 2008c:60045
- A.D. Barbour and T.C. Brown. Stein's method and point process approximation. Stochastic Process. Appl. 43 (1992), 9--31. Math. Review 93k:60120
- A.D. Barbour and L.H.Y. Chen (eds). An introduction to Stein's method. Vol. 4 of Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore. Singapore University Press, Singapore, 2005. Math. Review 2007j:60001
- A.D. Barbour, L. Holst and S. Janson. Poisson approximation. Vol. 2 of Oxford Studies in Probability. Oxford University Press, Oxford, 1992. Math. Review 93g:60043
- T. Brown. Position dependent and stochastic thinning of point processes. Stochastic Process. Appl. 9 (1979), 189--193. Math. Review 80i:60077
- T.C. Brown and A. Xia. On metrics in point process approximation. Stochastics Stochastics Rep. 52 (1995), 247--263. Math. Review 97j:60081
- L.H.Y. Chen and A. Xia. Stein's method, Palm theory and Poisson process approximation. Ann. Probab. 32 (2004), 2545--2569. Math. Review 2005d:60080
- D.J. Daley and D. Vere-Jones. An introduction to the theory of point processes. Springer Series in Statistics. Springer-Verlag, New York, 1988. Math. Review 90e:60060
- P.J. Diggle. Statistical analysis of spatial point patterns. Second edition. Arnold, London, 2003. Math. Review 85m:62205 (first edition)
- P. Doukhan. Mixing. Vol. 85 of Lecture Notes in Statistics. Springer-Verlag, New York, 1994. Math. Review 96b:60090
- P. Hall. Distribution of size, structure and number of vacant regions in a high-intensity mosaic. Z. Wahrsch. Verw. Gebiete 70 (1985), 237--261. Math. Review 86k:60020
- O. Kallenberg. Limits of compound and thinned point processes. J. Appl. Probability 12 (1975), 269--278. Math. Review 52 #12072
- O. Kallenberg. Random measures. Fourth edition. Akademie-Verlag, Berlin, 1986. Math. Review 87k:60137
- M. Månsson and M. Rudemo. Random patterns of nonoverlapping convex grains. Adv. in Appl. Probab. 34 (2002), 718--738. Math. Review 2003j:60014
- J. Mecke. Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen. Z. Wahrsch. Verw. Gebiete 9 (1967), 36--58. Math. Review 37 #3611
- J. Mecke. Eine charakteristische Eigenschaft der doppelt stochastischen Poissonschen Prozesse. Z. Wahrsch. Verw. Gebiete 11 (1968), 74--81. Math. Review 39 #3614
- J. Møller and R.P. Waagepetersen. Statistical inference and simulation for spatial point processes. Vol. 100 of Monographs on Statistics and Applied Probability. Chapman & Hall/CRC, Boca Raton, FL, 2004. Math. Review 2004h:62003
- J. Neveu. Mathematical foundations of the calculus of probability. Translated by Amiel Feinstein. Holden-Day Inc., San Francisco, Calif., 1965. Math. Review 33 #6660
- X.X. Nguyen and H. Zessin. Integral and differential characterizations of the Gibbs process. Math. Nachr. 88 (1979), 105--115. Math. Review 80i:60081a
- C. Preston. Random fields. Vol. 534 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1976. Math. Review 56 #6936
- R.-D. Reiss. A course on point processes. Springer Series in Statistics. Springer-Verlag, New York, 1993. Math. Review 94b:60058
- D. Schuhmacher. Distance estimates for Poisson process approximations of dependent thinnings. Electron. J. Probab. 10 (2005), 165--201 (electronic). Math. Review 2005j:60099
- D. Schuhmacher. Estimation of distances between point process distributions. PhD thesis, University of Zurich, 2005. http://www.dissertationen.unizh.ch/2006/schuhmacher/diss.pdf (Math. Review number not available.)
- C. Stein. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971). Vol. II: Probability theory. Univ. California Press, Berkeley, Calif., 1972, pp. 583--602. Math. Review 53 #6687
- D. Stoyan, W.S. Kendall and J. Mecke. Stochastic geometry and its applications. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. John Wiley & Sons Ltd., Chichester, 1987. Math. Review 88j:60034a
- A. Xia. Stein's method and Poisson process approximation. An introduction to Stein's method. Vol. 4 of Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. Singapore Univ. Press, Singapore, 2005, pp. 115--181. Math. Review MR2235450

This work is licensed under a Creative Commons Attribution 3.0 License.