Differentiability of Stochastic Flow of Reflected Brownian Motions
Abstract
We prove that a stochastic flow of reflected Brownian motions in a smooth multidimensional domain is differentiable with respect to its initial position. The derivative is a linear map represented by a multiplicative functional for reflected Brownian motion. The method of proof is based on excursion theory and analysis of the deterministic Skorokhod equation.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 2182-2240
Publication Date: October 6, 2009
DOI: 10.1214/EJP.v14-700
References
- Airault, Hélène. Perturbations singulières et solutions stochastiques de problèmes de D. Neumann-Spencer. (French) J. Math. Pures Appl. (9) 55 (1976), no. 3, 233--267. MR0501184 (58 #18606)
- Andres, Sebastian. Pathwise differentiability for SDEs in a convex polyhedron with oblique reflection. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009), no. 1, 104--116. MR2500230
- Andres, Sebastian. Pathwise Differentiability for SDEs in a Smooth Domain with Reflection (preprint)
- Burdzy, K. Multidimensional Brownian excursions and potential theory. Pitman Research Notes in Mathematics Series, 164. Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987. vi+172 pp. ISBN: 0-582-00573-6 MR0932248 (89d:60146)
- Burdzy, Krzysztof; Chen, Zhen-Qing. Coalescence of synchronous couplings. Probab. Theory Related Fields 123 (2002), no. 4, 553--578. MR1921013 (2003e:60184)
- Burdzy, Krzysztof; Chen, Zhen-Qing; Jones, Peter. Synchronous couplings of reflected Brownian motions in smooth domains. Illinois J. Math. 50 (2006), no. 1-4, 189--268 (electronic). MR2247829 (2007i:60102)
- Burdzy, Krzysztof; Lee, James M.. Multiplicative functional for reflected Brownian motion via deterministic ODE (preprint, Math Arxiv: 0805.3740)
- Cranston, M.; Le Jan, Y. On the noncoalescence of a two point Brownian motion reflecting on a circle. Ann. Inst. H. Poincaré Probab. Statist. 25 (1989), no. 2, 99--107. MR1001020 (90k:60154)
- Cranston, M.; Le Jan, Y. Noncoalescence for the Skorohod equation in a convex domain of $R\sp 2$. Probab. Theory Related Fields 87 (1990), no. 2, 241--252. MR1080491 (92e:60116)
- Deuschel, Jean-Dominique; Zambotti, Lorenzo. Bismut-Elworthy's formula and random walk representation for SDEs with reflection. Stochastic Process. Appl. 115 (2005), no. 6, 907--925. MR2134484 (2006e:60080)
- Dupuis, Paul; Ishii, Hitoshi. On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications. Stochastics Stochastics Rep. 35 (1991), no. 1, 31--62. MR1110990 (93e:60110)
- Dupuis, Paul; Ramanan, Kavita. Convex duality and the Skorokhod problem. I, II. Probab. Theory Related Fields 115 (1999), no. 2, 153--195, 197--236. MR1720348 (2001f:49041)
- Fukushima, Masatoshi; Ōshima, Yōichi; Takeda, Masayoshi. Dirichlet forms and symmetric Markov processes. de Gruyter Studies in Mathematics, 19. Walter de Gruyter & Co., Berlin, 1994. x+392 pp. ISBN: 3-11-011626-X MR1303354 (96f:60126)
- Hsu, Elton P. Multiplicative functional for the heat equation on manifolds with boundary. Michigan Math. J. 50 (2002), no. 2, 351--367. MR1914069 (2003f:58067)
- Ikeda, Nobuyuki; Watanabe, Shinzo. Heat equation and diffusion on Riemannian manifold with boundary. Proceedings of the International Symposium on Stochastic Differential Equations (Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1976), pp. 75--94, Wiley, New York-Chichester-Brisbane, 1978. MR0536005 (81b:58046)
- Ikeda, Nobuyuki; Watanabe, Shinzo. Stochastic differential equations and diffusion processes. Second edition. North-Holland Mathematical Library, 24. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. xvi+555 pp. ISBN: 0-444-87378-3 MR1011252 (90m:60069)
- Kunita, H. Stochastic differential equations and stochastic flows of diffeomorphisms. École d'été de probabilités de Saint-Flour, XII---1982, 143--303, Lecture Notes in Math., 1097, Springer, Berlin, 1984. MR0876080 (87m:60127)
- Lions, P.-L.; Sznitman, A.-S. Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math. 37 (1984), no. 4, 511--537. MR0745330 (85m:60105)
- Maisonneuve, Bernard. Exit systems. Ann. Probability 3 (1975), no. 3, 399--411. MR0400417 (53 #4251)
- Mandelbaum, Avi; Massey, William A. Strong approximations for time-dependent queues. Math. Oper. Res. 20 (1995), no. 1, 33--64. MR1320446 (96b:60240)
- Mandelbaum, Avi; Ramanan, Kavita; Directional derivatives of oblique reflection maps Math. Oper. Res. (to appear)
- Pilipenko, A. Yu. Stochastic flows with reflection. (Russian) Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 2005, no. 10, 23--28. MR2218498 (2007j:60089)
- Pilipenko, A. Yu. Properties of flows generated by stochastic equations with reflection. (Russian) Ukraïn. Mat. Zh. 57 (2005), no. 8, 1069--1078; translation in Ukrainian Math. J. 57 (2005), no. 8, 1262--1274 MR2218469 (2007g:60066)
- Pilipenko, A. Yu. On the generalized differentiability with initial data of a flow generated by a stochastic equation with reflection. (Ukrainian) Teor. Ĭmovīr. Mat. Stat. No. 75 (2006), 127--139; translation in Theory Probab. Math. Statist. No. 75 (2007), 147--160 MR2321188 (2008e:60179)
- Pilipenko, A. Yu. Stochastic flows with reflection. (2008, Math Arxiv: 0810.4644)
- Saisho, Yasumasa. Stochastic differential equations for multidimensional domain with reflecting boundary. Probab. Theory Related Fields 74 (1987), no. 3, 455--477. MR0873889 (88b:60139)
- Tanaka, Hiroshi. Stochastic differential equations with reflecting boundary condition in convex regions. Hiroshima Math. J. 9 (1979), no. 1, 163--177. MR0529332 (80k:60075)
- Weerasinghe, A., Some properties of stochastic flows and diffusions with reflections, Ph.D.~Thesis, University of Minnesota, 1986.

This work is licensed under a Creative Commons Attribution 3.0 License.