Download this PDF file Fullscreen Fullscreen Off
References
- Adler, R.J. (1981). The Geometry of Random Fields. Wiley, Chichester. MR0611857
- Amann, H. (2009). Anisotropic Function Spaces and Maximal Regularity for Parabolic Problems. Part 1: Function Spaces. Jindrich Necas Center for Mathematical Modeling Lecture Notes, Prague, Volume 6.
- Angulo, J.M.,Anh, V.V., McVinish, R. and Ruiz-Medina, M.D. (2005). Fractional kinetic equation driven by gaussian or infinitely divisible noise. Advances in Applied Probability 37, 366--392. MR2144558
- Angulo, J.M. Ruiz-Medina, M.D., Anh, V.V. and Grecksch, W. (2000). Fractional diffusion and fractional heat equation. Advances in Applied Probability 32, 1077-1099. MR1808915
- Anh, V.V., Angulo J.M. and Ruiz-Medina, M.D. (1999). Possible long-range dependence in fractional random fields. Journal of Statistical Planning and Inference 80, 95--110. MR1713795
- Anh, V.V. and Leonenko, N.N. (2001). Spectral analysis of fractional kinetic equations with random data. J. Statis. Phys. 104, 1349--1387. MR1859007
- Benassi, A. Jaffard, S and Roux, D. (1997). Elliptic Gaussian random processes. Rev. Mat. Iberoamericana 13, 19--90. MR1462329
- Biagini, F. , Hu, Y., Oksendal, B. and Zhang, T. (2008). Stochastic calculus for fractional Brownian motion and applications. Springer-Verlag, London. MR2387368
- Chow, P.-L. (2007). Stochastic partial differential equations. Chapman \& Hall. MR2295103
- Dachkovski, S. (2003). Anisotropic function spaces and related semilinear hypoelliptic equations. Math. Nachr. 248-249, 40-61. MR1950714
- Dautray, R. and Lions, J.L. (1985a). Mathematical analysis and numerical methods for science and technology. Volume~2 of Functional and variational methods. Springer-Verlag, New York. MR0969367
- Dautray, R. and Lions, J.~L.} (1985b). Mathematical Analysis and Numerical Methods for Science and Technology, Volume~3 of Spectral Theory and Applications. Springer-Verlag, New York.
- Duncan, T.E., Maslowski, B. and Pasik-Duncan, B. (2002). Fractional Brownian motion and stochastic equations in Hilbert space. Stoch. Dyn. 2, 225-250. MR1912142
- Edwards, R.E. (1965). Functional Analysis. Holt, Rinehart and Winston, New York. MR0221256
- Gibinelle, M., Lejay, A. and Tindel, S. (2006). Young integrals and SPDE. Pot. Analysis 25, 307-326. MR2255351
- Guyon, X . (1987). Variations de champs gaussiens stationnaites: application a l'identification. Probability Theory and Related Fields 75, 179--193. MR0885461
- Heine, V. (1955). Models for two-dimensional stationary stochastic processes. Biometrika 42, 170--178. MR0071673
- Hu, Y. (2001). Heat equation with fractional white noise potentials. Appl. Math. Optim. 43, 221-243. MR1885698
- Hu, Y. and Nualart, D. (2009b). Rough path analysis via fractional calculus. Trans. Amer. Math. Soc. 361, 2689-2718. MR2471936
- Hu, Y., Oksendal, B. and Zhang, T. (2004). General fractional multiparameter noise theory and stochastic partial differential equations. Commun. Partial Differemt. Equations 29, 1-23. MR2038141
- Igloi, E. and Terdik, G. (1999). Bilinear stochastic systems with fractional Brownian motion input. Ann. Appl. Probab. 9, 46--77. MR1682600
- Jacob, N. (2005). Pseudodifferential operators: Markov processes III. Markov processes and applications, Imperial College Press. MR2158336
- Kelbert, M. Leonenko, N. and Ruiz-Medina, M.D. (2005). Fractional Random fields associated with stochastic fractional heat equations. Advances in Applied Probability 37, 108-133. MR2135156
- Kikuchi, K. and Negoro, A. (1997). On Markov processes generated by pseudodifferentail operator of variable order. Osaka Journal of Mathematics 34, 319--335. MR1483853
- Kozachenko, Yu. V. and Slivka, G. I. (2007). Modelling a solution of a hyperbolic equation with random initial conditions. Theor. Probability and Math. Statist. 74, 59-75. MR2336779
- Leonenko, N. N. and Ruiz-Medina, M. D. (2006) Scaling laws for the multidimensional Burgers equation with quadratic external potential. J. Stat. Phys. 124, 191--205. MR2256621
- Leonenko, N. N. and Ruiz-Medina, M. D. (2008) Gaussian scenario for the heat equation with quadratic potential and weakly dependent data with applications. Methodol. Comput. Appl. Probab., 10, 595—620. MR2443082
- Leopold, H.-G. (1991). On function spaces of variable order of differentiation. Forum Mathematicum 3, 1--21. MR1085592
- Lions, T. and Qian, Z. (2002). System control and rough paths. Oxford Mathematical Monographs, Oxford University Press, Oxford MR2036784
- Malowski, B. and Nualart, D. (2005). Evolution equations driven by a fractional Brownian motion. J. Func. Anal. 209, 277-305. MR1994773
- Mishura, Y.S. (2008). Stochastic calculus for fractional Brownian motion and related processes. Lecture Notes in Mathematics, 1929, Springer-Verlag, Berlín. MR2378138
- Mohapl, J. (1999). On estimation in random fields generated by linear stochastic partial differential equations. Mathematica Slovaca 49, 95--115. MR1804478
- Mueller, C. and Tribe, R. (2004). A singular parabolic Anderson model. Electron J. Probab. 9, 98-144. MR2041830
- Nualart, D. and Sanz-Solé, M. (1979). A Markov property for two-parameter Gaussian processes. Stochastica 3, 1--16. MR0562437
- Ramm, A.G. (2005). Random fields estimation. World Scientific, Singapore.
- Ratanov, N.E., Shuhov, A.G. and Suhov, Yu M. (1991). Stabilization of the statistical solution of the parabolic equation. Acta Applicandae Mathematicae 22, 103-115. MR1100768
- Robeva, R.S. and Pitt, L.D.} (2007). On the equality of sharp and germ \sigma -fields for Gaussian processes and fields. Pliska Stud. Math. Bulgar. 16, 183-205. MR2070315
- Ruiz-Medina, M.D., Angulo, J.M. and Anh, V.V. (2002). Stochastic fractional-order differential models on fractals. Theory of Probability and Mathematical Statistics 67, 130--146. MR1956627
- Ruiz-Medina, M.D., Angulo, J.M. and Anh, V.V. (2003). Fractional Generalized Random Fields on Bounded Domains. Stochastic Analysis and Applications 21, 465--492. MR1967723
- Ruiz-Medina, M.D., Angulo, J.M. and Anh, V.V. (2006). Spatial and spatiotemporal Karhunen-Loéve-type representations on fractal domains. Stochastic Analysis and Applications 24, 195--219. MR2198541
- Ruiz-Medina, M.D., Angulo, J.M. and Anh, V.V. (2008). Multifractality in space-time statistical models. Stochastic Environmental Research and Risk Assessment 22, 81--86. MR2418414
- Ruiz-Medina, M.D., Anh, V.V. and Angulo, J.M. (2004a). Fractional generalized random fields of variable order. Stochastic Analysis and Applications 22, 775--799. MR2047278
- Ruiz-Medina, M.D., Anh, V.V. and Angulo, J.M. (2004b). Fractal random fields on domains with fractal boundary. Infinite Dimensional Analysis, Quantum Probability and Related Topics 7, 395--417. MR2085640
- Ruiz-Medina, M.D., Anh, V.V. and Angulo, J.M.} (2010). Multifractional Markov processes in heterogeneous domains. Stochastic Analysis and Applications 29, 15--47.
- Sanz-Solé, M. and Torrecilla, I. (2009). A fractional Posson equation: existence, regularity and approximation of the solutions. Stochastics and Dynamics 9, 519-548. MR2589036
- Sanz-Solé, M. and Vuilermot, P.A. (2010). Mild solutions for a class of fractional SPDs and their sample paths. Preprint.
- Taqqu, M. S. (1979). Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. verw. Gebiete 50, 53-83. MR0550123
- Taqqu, M. S. (2003) Fractional Brownian motion and long-range dependence. Theory and applications of long-range dependence,5--38, Birkhäuser Boston, Boston, MA. MR1956042
- Tindel, S., Tudor, C. and Viens, F. (2003). Stochastic evolution equations with the drift in the first fractional chaos. Stoch. Anal. Appl. 22, 1209-1233.
- Triebel, H. (1978). Interpolation Theory, Function Spaces, Differential Operators. North-Holland Publishing Co. Amsterdam. MR0503903
- Vecchia, A. V. (1985). A general class of models for stationary two-dimensional random processes. Biometrika 72, 281-291. MR0801769
- Wu, D. and Xiao, Y. (2006). Fractal properties of the random string processes. IMS Lecture Notes-Monograph Series. High Dimensional Probability 51, 128-147. MR2387765
- Yaglom. A.M. (1957). Some classes of random fields in n-dimensional space related to stationary random processes. Theor. Prob. Appl. 3, 273-320.
- Yaglom. A.M. (1986). Correlation Theory of Stationary and Related Random Functions I. Basic Results. Springer-Verlag, New-York. MR0893393

This work is licensed under a Creative Commons Attribution 3.0 License.