Exact Asymptotic for Distribution Densities of Lévy Functionals
Alexei M Kulik (National Academy of Sciences of Ukraine)
Abstract
A version of the saddle point method is developed, which allows one to describe exactly the asymptotic behavior of distribution densities of Lévy driven stochastic integrals with deterministic kernels. Exact asymptotic behavior is established for (a) the transition probability density of a real-valued Lévy process; (b) the transition probability density and the invariant distribution density of a Lévy driven Ornstein-Uhlenbeck process; (c) the distribution density of the fractional Lévy motion.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1394-1433
Publication Date: August 10, 2011
DOI: 10.1214/EJP.v16-909
References
- B. Baeumer, M. Meerschaert. Tempered stable Lévy motion and transient super-diffusion. J. Comput. Appl. Math. 233 (10) 2010, 2438-2448. MR 2577834
- R. Banuelos, K. Bogdan. Symmetric stable processes in cones. Potent. Anal. 21(3) (2004), 263-288. MR 2075671
- M. T. Barlow, R. B. Bass, Z.-Q. Chen, M.Kassmann. Non-local Dirichlet forms and symmetric jump processes. Trans. Amer. Math. Soc. 361 (2009), 1963-1999. MR 2465826
- M. T. Barlow, A. Grigoryan, T. Kumagai. Heat kernel upper bounds for jump processes and the first exit time. J. Reine Angew. Math. 626 (2009), 135-157. MR 2492992
- O. E. Barndorff-Nielsen, N. Shephard. Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J. Roy. Statist. Soc. Ser. B. 63 (2001), 167-241. MR 1841412
- R. F. Bass and D. A. Levin. Transition probabilities for symmetric jump processes. Trans. Amer. Math. Soc. 354 (2002), 2933-2953. MR 1895210
- A. Benassi, S. Cohen, J. Istas. On roughness indices for fractional fields. Bernoulli 10(2) (2004), 357-373. MR 2046778
- M. L. Bianchi, S. T. Rachev, Y. S. Kim, F. J. Fabozzi. Tempered infinitely divisible distributions and processes. Working Paper Series in Economics 26 (2011) MR 2768518
- S. V. Bodnarchuk, O. M. Kulyk. Conditions for existence and smoothness of the distribution density for an Ornstein-Uhlenbeck process with Lévy noise. Teor. Imovirn. Mat. Stat. 79 (2008), 20-33. (Ukrainian; English transl. in Theor. Probab. Math. Stat. 79 (2009), 23-38). Math. Review number not available.
- K. Bogdan, T. Jakubowski. Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Comm. Math. Phys. 271(1) (2007), 179-198. MR 2283957
- K. Bogdan, T. Grzywny, T. M. Ryznar. Heat kernel estimates for the fractional Laplacian with Dirichlet conditions. Ann. Probab. 38(5) (2010), 1901-1923. MR 2722789
- E. A. Carlen, S. Kusuoka, D. W. Stroock. Upper bounds for symmetric Markov transition functions. Ann. Inst. Poincaré. 2 (1987), 245-287. MR 0898496
- P. Carr, H. Geman, D.B. Madan, M. Yor, The fine structure of asset returns: An empirical investigation. J. Business 75 (2002), 303-325. Math. Review number not available.
- P. Carr, H. Geman, D.B. Madan, M. Yor. Stochastic volatility for Lévy processes. Math. Finance 13 (2003), 345-382. MR 1995283
- Z.-Q. Chen. Symmetric jump processes and their heat kernel estimates. Sci. China Ser. A. 52 (2009), 1423-1445. MR 2520585
- Z.-Q. Chen, T. Kumagai. Heat kernel estimates for stable-like processes on d-sets. Stoch. Proc. Appl. 108 (2003), 27-62. MR 2008600
- Z.-Q. Chen, P. Kim, T. Kumagai. On Heat kernel estimates and parabolic Harnack inequality for jump processes on metric measure spaces. Acta Math. Sin. (Engl. Ser.) 25 (2009), 1067-1086. MR 2524930
- Z.-Q. Chen, P. Kim, T. Kumagai. Global heat kernel estimates for symmetric jump processes. Trans. Amer. Math. Soc. 363 (2011), 5021-5055. Math. Review number not available.
- Z.-Q. Chen, P. Kim, R. Song. Heat kernel estimates for Dirichlet fractional Laplacian. J. Eur. Math. Soc. 12 (2010), 1307-1329. MR 2677618
- Z.-Q. Chen, P. Kim, R. Song. Sharp heat kernel estimates for relativistic stable processes in open sets. To appear in Ann. Probab. Math. Review number not available.
- Z.-Q. Chen, P. Kim, R. Song. Dirichlet heat kernel estimates for ∆α/2 +∆β/2. To appear in Ill J. Math. Math. Review number not available.
- Z.-Q. Chen, P. Kim, R. Song. Heat kernel estimates for ∆+ ∆α/2 in C1, 1 open sets. To appear in J. London Math. Soc. Math. Review number not available.
- Z.-Q. Chen, T. Kumagai. Heat kernel estimates for jump processes of mixed types on metric measure spaces. Prob. Th. Rel. Fields 140(1-2) (2008), 277-317. MR 2357678
- Z.-Q. Chen, P. Kim, T. Kumagai, T. Weighted Poincaré inequality and heat kernel estimates for finite range jump processes. Math. Ann. 342(4) (2008), 833-883. MR 2443765
- S. Cohen, J. Rosinski. Gaussian approximation of multivariate Lévy processes with applications to simulation of tempered stable processes. Bernoulli. 13(1), 2007, 195-210. MR 2307403
- R. Cont and P. Tankov. Financial Modelling with Jump Processes. Chapman &. Hall, CRC Press, 2004. MR 2042661
- E. T. Copson. Asymptotic expansions. Cambridge Uni. Press, Cambridge, 1965. MR 0168979
- J.-D. Deuschel, D. W. Stroock. Large Deviation. Academic Press, New York, 1989. MR 0997938
- M. A. Evgrafov. Asymptotical estimates and entire functions. FM, Moscow, 1962. MR 0154981
- M. V. Fedoryuk. The saddle point method. Nauka, Moscow, 1977. MR 0507923
- P. Hartman, A.Wintner. On the infinitesimal generators of integral convolutions. Am. J. Math. 64 (1942), 273-298. MR 0006635
- C. Houdré, R. Kawai. On fractional tempered stable motion. Stoch. Proc. Appl. 116(8) (2006), 1161-1184. MR 2250807
- I. A. Ibragimov, Yu. V. Linnik. Independent and stationary dependent variables. Nauka, Moscow, 1965.
- Y. Ishikawa, H. Kunita. Malliavin calculus on the Wiener-Poisson space and its application to canonical SDE with jumps. Stoch. Proc. Appl. 116 (2006), 1743-1769. MR 2307057
- O. Kallenberg. Splitting at backward times in regenerative sets. Ann. Prob. 9(5) (1981), 781-799. MR 0628873
- Y. S. Kim, S. T. Rachev, B. M. Chung, and M. L. Bianchi. The modified tempered stable distribution, Garch models, and option pricing. Prob. Math. Stat. 29 (2009), 91-117. MR 2553002
- Y. S. Kim, S. T. Rachev, M. L. Bianchi, F. J. Fabozzi. Tempered stable and tempered infinitely divisible GARCH models. Working Paper Series in Economics. 28 (2011)
- C. Klüppelberg, M. Matsui. Generalized fractional Lévy processes with fractional Brownian motion limit and applications to stochastic volatility models. Preprint 2010. Available at http://www-m4.ma.tum.de/Papers/index.html
- V. P. Knopova, A. M. Kulik. Small time asymptotics of the distribution density for a Lévy process. In preparation.
- V. P. Knopova, R. Schilling. Transition density estimates for some Lévy and Lévy -type processes. To appear in J. Theor. Prob. DOI: 10.1007/s10959-010-0300-0.
- A. M. Kulik. Stochastic calculus of variations for general Lévy processes and its applications to jump-type SDE's with non-degenerated drift. Available at arxiv.org:math.PR/0606427v2.
- A. M. Kulik. Asymptotic and spectral properties of exponentially ϕ-ergodic Markov processes. Stoch. Proc. Appl. 121 (5) (2011), 1044-1075.
- E. Lukacs. Characteristic function. Griffin, London, 1979.
- T. Marquardt. Fractional Lévy processes with an application to long memory moving average processes. Bernoulli 12(6) (2006), 1099-1126. MR 2274856
- H. Masuda. On multidimensional Ornstein-Uhlenbeck processes driven by a general Le'vy process. Bernoulli 10(1) (2004), 97-120. MR 2044595
- S. Orey. On continuity properties of infinitely divisible distribution functions. Ann. Math. Statist. 39 (1968), 936-937. MR 0226701
- J. Picard. On the existence of smooth densities for jump processes. Prob. Th. Rel. Fields 105 (1996), 481-511. MR 1402654
- E. Priola, J. Zabczyk. Densities for Ornstein-Uhlenbeck processes with jumps. Bull. Lond. Math. Soc. 41(1) (2009), 41-50. MR 2481987
- B. S. Rajput, J. Rosinski. Spectral representations of infinitely divisible processes. Prob. Th. Rel. Fields 82 (1989), 451-487. MR 1001524
- J. Rosinski. Tempering stable processes Stoch. Proc. Appl. 117 (2007), 677-707. MR 2327834
- J. Rosinski, J.Singlair. Generalized tempered stable processes. In: Stability in Probability, Ed. J.K. Misiewicz, Banach Center Publ. 90 (2010), 153-170.
- G. Samorodnitsky, M. S. Taqqu. Stable Non-Gaussian Random Processes. Chapman Hall, New York, 1994. MR 1280932
- K.-I. Sato. Lévy processes and infinitely divisible distributions. Cambridge Uni. Press, Cambridge, 1999. MR 1739520
- K.-I. Sato, M. Yamazato. Operator-self-decomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type. Stoch. Proc. Appl. 17 (1984), 73-100. MR 0738769
- T. Simon. On the absolute continuity of multidimensional Ornstein-Uhlenbeck processes. Prob. Th. Rel. Fields (2010), DOI 10.1007/s00440-010-0296-5.
- P. Sztonyk. Estimates of tempered stable densities. J. Theor. Prob. 23(1) (2010) 127-147. MR 2591907
- P. Sztonyk. Transition density estimates for jump Lévy processes. Stoch. Proc. Appl. 121(6) (2011), 1245-1265.

This work is licensed under a Creative Commons Attribution 3.0 License.