Download this PDF file Fullscreen Fullscreen Off
References
- B. Baeumer, M. Meerschaert. Tempered stable Lévy motion and transient super-diffusion. J. Comput. Appl. Math. 233 (10) 2010, 2438-2448. MR 2577834
- R. Banuelos, K. Bogdan. Symmetric stable processes in cones. Potent. Anal. 21(3) (2004), 263-288. MR 2075671
- M. T. Barlow, R. B. Bass, Z.-Q. Chen, M.Kassmann. Non-local Dirichlet forms and symmetric jump processes. Trans. Amer. Math. Soc. 361 (2009), 1963-1999. MR 2465826
- M. T. Barlow, A. Grigoryan, T. Kumagai. Heat kernel upper bounds for jump processes and the first exit time. J. Reine Angew. Math. 626 (2009), 135-157. MR 2492992
- O. E. Barndorff-Nielsen, N. Shephard. Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J. Roy. Statist. Soc. Ser. B. 63 (2001), 167-241. MR 1841412
- R. F. Bass and D. A. Levin. Transition probabilities for symmetric jump processes. Trans. Amer. Math. Soc. 354 (2002), 2933-2953. MR 1895210
- A. Benassi, S. Cohen, J. Istas. On roughness indices for fractional fields. Bernoulli 10(2) (2004), 357-373. MR 2046778
- M. L. Bianchi, S. T. Rachev, Y. S. Kim, F. J. Fabozzi. Tempered infinitely divisible distributions and processes. Working Paper Series in Economics 26 (2011) MR 2768518
- S. V. Bodnarchuk, O. M. Kulyk. Conditions for existence and smoothness of the distribution density for an Ornstein-Uhlenbeck process with Lévy noise. Teor. Imovirn. Mat. Stat. 79 (2008), 20-33. (Ukrainian; English transl. in Theor. Probab. Math. Stat. 79 (2009), 23-38). Math. Review number not available.
- K. Bogdan, T. Jakubowski. Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Comm. Math. Phys. 271(1) (2007), 179-198. MR 2283957
- K. Bogdan, T. Grzywny, T. M. Ryznar. Heat kernel estimates for the fractional Laplacian with Dirichlet conditions. Ann. Probab. 38(5) (2010), 1901-1923. MR 2722789
- E. A. Carlen, S. Kusuoka, D. W. Stroock. Upper bounds for symmetric Markov transition functions. Ann. Inst. Poincaré. 2 (1987), 245-287. MR 0898496
- P. Carr, H. Geman, D.B. Madan, M. Yor, The fine structure of asset returns: An empirical investigation. J. Business 75 (2002), 303-325. Math. Review number not available.
- P. Carr, H. Geman, D.B. Madan, M. Yor. Stochastic volatility for Lévy processes. Math. Finance 13 (2003), 345-382. MR 1995283
- Z.-Q. Chen. Symmetric jump processes and their heat kernel estimates. Sci. China Ser. A. 52 (2009), 1423-1445. MR 2520585
- Z.-Q. Chen, T. Kumagai. Heat kernel estimates for stable-like processes on d-sets. Stoch. Proc. Appl. 108 (2003), 27-62. MR 2008600
- Z.-Q. Chen, P. Kim, T. Kumagai. On Heat kernel estimates and parabolic Harnack inequality for jump processes on metric measure spaces. Acta Math. Sin. (Engl. Ser.) 25 (2009), 1067-1086. MR 2524930
- Z.-Q. Chen, P. Kim, T. Kumagai. Global heat kernel estimates for symmetric jump processes. Trans. Amer. Math. Soc. 363 (2011), 5021-5055. Math. Review number not available.
- Z.-Q. Chen, P. Kim, R. Song. Heat kernel estimates for Dirichlet fractional Laplacian. J. Eur. Math. Soc. 12 (2010), 1307-1329. MR 2677618
- Z.-Q. Chen, P. Kim, R. Song. Sharp heat kernel estimates for relativistic stable processes in open sets. To appear in Ann. Probab. Math. Review number not available.
- Z.-Q. Chen, P. Kim, R. Song. Dirichlet heat kernel estimates for ∆α/2 +∆β/2. To appear in Ill J. Math. Math. Review number not available.
- Z.-Q. Chen, P. Kim, R. Song. Heat kernel estimates for ∆+ ∆α/2 in C1, 1 open sets. To appear in J. London Math. Soc. Math. Review number not available.
- Z.-Q. Chen, T. Kumagai. Heat kernel estimates for jump processes of mixed types on metric measure spaces. Prob. Th. Rel. Fields 140(1-2) (2008), 277-317. MR 2357678
- Z.-Q. Chen, P. Kim, T. Kumagai, T. Weighted Poincaré inequality and heat kernel estimates for finite range jump processes. Math. Ann. 342(4) (2008), 833-883. MR 2443765
- S. Cohen, J. Rosinski. Gaussian approximation of multivariate Lévy processes with applications to simulation of tempered stable processes. Bernoulli. 13(1), 2007, 195-210. MR 2307403
- R. Cont and P. Tankov. Financial Modelling with Jump Processes. Chapman &. Hall, CRC Press, 2004. MR 2042661
- E. T. Copson. Asymptotic expansions. Cambridge Uni. Press, Cambridge, 1965. MR 0168979
- J.-D. Deuschel, D. W. Stroock. Large Deviation. Academic Press, New York, 1989. MR 0997938
- M. A. Evgrafov. Asymptotical estimates and entire functions. FM, Moscow, 1962. MR 0154981
- M. V. Fedoryuk. The saddle point method. Nauka, Moscow, 1977. MR 0507923
- P. Hartman, A.Wintner. On the infinitesimal generators of integral convolutions. Am. J. Math. 64 (1942), 273-298. MR 0006635
- C. Houdré, R. Kawai. On fractional tempered stable motion. Stoch. Proc. Appl. 116(8) (2006), 1161-1184. MR 2250807
- I. A. Ibragimov, Yu. V. Linnik. Independent and stationary dependent variables. Nauka, Moscow, 1965.
- Y. Ishikawa, H. Kunita. Malliavin calculus on the Wiener-Poisson space and its application to canonical SDE with jumps. Stoch. Proc. Appl. 116 (2006), 1743-1769. MR 2307057
- O. Kallenberg. Splitting at backward times in regenerative sets. Ann. Prob. 9(5) (1981), 781-799. MR 0628873
- Y. S. Kim, S. T. Rachev, B. M. Chung, and M. L. Bianchi. The modified tempered stable distribution, Garch models, and option pricing. Prob. Math. Stat. 29 (2009), 91-117. MR 2553002
- Y. S. Kim, S. T. Rachev, M. L. Bianchi, F. J. Fabozzi. Tempered stable and tempered infinitely divisible GARCH models. Working Paper Series in Economics. 28 (2011)
- C. Klüppelberg, M. Matsui. Generalized fractional Lévy processes with fractional Brownian motion limit and applications to stochastic volatility models. Preprint 2010. Available at http://www-m4.ma.tum.de/Papers/index.html
- V. P. Knopova, A. M. Kulik. Small time asymptotics of the distribution density for a Lévy process. In preparation.
- V. P. Knopova, R. Schilling. Transition density estimates for some Lévy and Lévy -type processes. To appear in J. Theor. Prob. DOI: 10.1007/s10959-010-0300-0.
- A. M. Kulik. Stochastic calculus of variations for general Lévy processes and its applications to jump-type SDE's with non-degenerated drift. Available at arxiv.org:math.PR/0606427v2.
- A. M. Kulik. Asymptotic and spectral properties of exponentially ϕ-ergodic Markov processes. Stoch. Proc. Appl. 121 (5) (2011), 1044-1075.
- E. Lukacs. Characteristic function. Griffin, London, 1979.
- T. Marquardt. Fractional Lévy processes with an application to long memory moving average processes. Bernoulli 12(6) (2006), 1099-1126. MR 2274856
- H. Masuda. On multidimensional Ornstein-Uhlenbeck processes driven by a general Le'vy process. Bernoulli 10(1) (2004), 97-120. MR 2044595
- S. Orey. On continuity properties of infinitely divisible distribution functions. Ann. Math. Statist. 39 (1968), 936-937. MR 0226701
- J. Picard. On the existence of smooth densities for jump processes. Prob. Th. Rel. Fields 105 (1996), 481-511. MR 1402654
- E. Priola, J. Zabczyk. Densities for Ornstein-Uhlenbeck processes with jumps. Bull. Lond. Math. Soc. 41(1) (2009), 41-50. MR 2481987
- B. S. Rajput, J. Rosinski. Spectral representations of infinitely divisible processes. Prob. Th. Rel. Fields 82 (1989), 451-487. MR 1001524
- J. Rosinski. Tempering stable processes Stoch. Proc. Appl. 117 (2007), 677-707. MR 2327834
- J. Rosinski, J.Singlair. Generalized tempered stable processes. In: Stability in Probability, Ed. J.K. Misiewicz, Banach Center Publ. 90 (2010), 153-170.
- G. Samorodnitsky, M. S. Taqqu. Stable Non-Gaussian Random Processes. Chapman Hall, New York, 1994. MR 1280932
- K.-I. Sato. Lévy processes and infinitely divisible distributions. Cambridge Uni. Press, Cambridge, 1999. MR 1739520
- K.-I. Sato, M. Yamazato. Operator-self-decomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type. Stoch. Proc. Appl. 17 (1984), 73-100. MR 0738769
- T. Simon. On the absolute continuity of multidimensional Ornstein-Uhlenbeck processes. Prob. Th. Rel. Fields (2010), DOI 10.1007/s00440-010-0296-5.
- P. Sztonyk. Estimates of tempered stable densities. J. Theor. Prob. 23(1) (2010) 127-147. MR 2591907
- P. Sztonyk. Transition density estimates for jump Lévy processes. Stoch. Proc. Appl. 121(6) (2011), 1245-1265.

This work is licensed under a Creative Commons Attribution 3.0 License.