Download this PDF file Fullscreen Fullscreen Off
References
- Allouba, Hassan; Zheng, Weian. Brownian-time processes: the PDE connection and the half-derivative generator. Ann. Probab. 29 (2001), no. 4, 1780--1795. MR1880242 (2002j:60118)
- Applebaum, David. Lévy processes and stochastic calculus.Second edition.Cambridge Studies in Advanced Mathematics, 116. Cambridge University Press, Cambridge, 2009. xxx+460 pp. ISBN: 978-0-521-73865-1 MR2512800 (2010m:60002)
- Baeumer, Boris; Meerschaert, Mark M. Stochastic solutions for fractional Cauchy problems. Fract. Calc. Appl. Anal. 4 (2001), no. 4, 481--500. MR1874479 (2003d:26006)
- Baeumer, Boris; Meerschaert, Mark M.; Nane, Erkan. Brownian subordinators and fractional Cauchy problems. Trans. Amer. Math. Soc. 361 (2009), no. 7, 3915--3930. MR2491905 (2010f:60233)
- Baeumer, Boris; Meerschaert, Mark M. Tempered stable Lévy motion and transient super-diffusion. J. Comput. Appl. Math. 233 (2010), no. 10, 2438--2448. MR2577834 (2010m:60285)
- Beghin, L.; Orsingher, E. Fractional Poisson processes and related planar random motions. Electron. J. Probab. 14 (2009), no. 61, 1790--1827. MR2535014 (2010m:60168)
- Beghin, L.; Orsingher, E. Poisson-type processes governed by fractional and higher-order recursive differential equations. Electron. J. Probab. 15 (2010), no. 22, 684--709. MR2650778 (2011f:60168)
- Billingsley, Patrick. Convergence of probability measures.John Wiley & Sons, Inc., New York-London-Sydney 1968 xii+253 pp. MR0233396 (38 #1718)
- Bingham, N. H. Limit theorems for occupation times of Markov processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 17 1971 1--22. MR0281255 (43 #6974)
- Bingham, N. H. Maxima of sums of random variables and suprema of stable processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 26 (1973), 273--296. MR0415780 (54 #3859)
- Cahoy, Dexter Odchigue. Fractional Poisson process in terms of alpha-stable densities.Thesis (Ph.D.)âCase Western Reserve University.ProQuest LLC, Ann Arbor, MI, 2007. 106 pp. ISBN: 978-1109-98348-7 MR2710115
- Cahoy, Dexter O.; Uchaikin, Vladimir V.; Woyczynski, Wojbor A. Parameter estimation for fractional Poisson processes. J. Statist. Plann. Inference 140 (2010), no. 11, 3106--3120. MR2659841 (2011h:62059)
- M. Caputo. Linear models of dissipation whose Q is almost frequency independent, Part II. Geophys. J. R. Astr. Soc. 13 (1967), 529--539. Math. Review number not available.
- A. Cartea, D. Del-Castillo-Negrete. Fluid limit of the continuous-time random walk with general LÃvy jump distribution functions. Phys. Rev. E, 76 (2007), 041105. Math. Review number not available.
- A. Chakrabarty, M.M. Meerschaert. Tempered stable laws as random walk limits. Statist. Probab. Lett. 81(8) (2011), 989--997. Math. Review number not available.
- A.V. Chechkin, R. Gorenflo, I.M. Sokolov. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66 (2002), 046129--046135. Math. Review number not available.
- A.V. Chechkin, J. Klafter, I.M. Sokolov. Fractional Fokker-Plank equation for ultraslow kinetics. Europhys. Lett. 63 (2003), 326--332. Math. Review number not available.
- Cont, Rama; Tankov, Peter. Financial modelling with jump processes.Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL, 2004. xvi+535 pp. ISBN: 1-5848-8413-4 MR2042661 (2004m:91004)
- Feller, William. An introduction to probability theory and its applications. Vol. II. Second edition John Wiley & Sons, Inc., New York-London-Sydney 1971 xxiv+669 pp. MR0270403 (42 #5292)
- R. Hilfer, L. Anton. Fractional master equations and fractal time random walks. Phys. Rev. E 51 (1995), R848-ñR851.
- Hille, Einar; Phillips, Ralph S. Functional analysis and semi-groups.rev. ed.American Mathematical Society Colloquium Publications, vol. 31. American Mathematical Society, Providence, R. I., 1957. xii+808 pp. MR0089373 (19,664d)
- Huillet, Thierry. On Linnik's continuous-time random walks. J. Phys. A 33 (2000), no. 14, 2631--2652. MR1761635 (2002a:82056)
- Jumarie, Guy. Fractional master equation: non-standard analysis and Liouville-Riemann derivative. Chaos Solitons Fractals 12 (2001), no. 13, 2577--2587. MR1851079 (2003i:82069)
- V. Keyantuo,C. Lizama. On a connection between powers of operators and fractional Cauchy problems. (2009). Preprint available at netlizama.usach.cl/ Keyantuo-Lizama(AMPA)(2009).PDF.
- Kochubei, Anatoly N. Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340 (2008), no. 1, 252--281. MR2376152 (2009i:35177)
- Kozubowski, Tomasz J. The inner characterization of geometric stable laws. Statist. Decisions 12 (1994), no. 3, 307--321. MR1309670 (95j:60030)
- Lagerås, Andreas Nordvall. A renewal-process-type expression for the moments of inverse subordinators. J. Appl. Probab. 42 (2005), no. 4, 1134--1144. MR2203828 (2007c:60089)
- Laskin, Nick. Fractional Poisson process.Chaotic transport and complexity in classical and quantum dynamics. Commun. Nonlinear Sci. Numer. Simul. 8 (2003), no. 3-4, 201--213. MR2007003 (2004j:60101)
- Metzler, Ralf; Klafter, Joseph. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), no. 1, 77 pp. MR1809268 (2001k:82082)
- Mainardi, F. The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9 (1996), no. 6, 23--28. MR1419811 (97h:35132)
- Mainardi, Francesco; Gorenflo, Rudolf; Scalas, Enrico. A fractional generalization of the Poisson processes. Vietnam J. Math. 32 (2004), Special Issue, 53--64. MR2120631
- Mainardi, Francesco; Gorenflo, Rudolf; Vivoli, Alessandro. Beyond the Poisson renewal process: a tutorial survey. J. Comput. Appl. Math. 205 (2007), no. 2, 725--735. MR2329648
- M.M. Meerschaert, H.P. Scheffler. Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice. Wiley Interscience, New York, 2001.
- Meerschaert, Mark M.; Scheffler, Hans-Peter. Limit theorems for continuous-time random walks with infinite mean waiting times. J. Appl. Probab. 41 (2004), no. 3, 623--638. MR2074812 (2005f:60105)
- Meerschaert, Mark M.; Scheffler, Hans-Peter. Stochastic model for ultraslow diffusion. Stochastic Process. Appl. 116 (2006), no. 9, 1215--1235. MR2251542 (2008g:60136)
- Meerschaert, Mark M.; Scheffler, Hans-Peter. Triangular array limits for continuous time random walks. Stochastic Process. Appl. 118 (2008), no. 9, 1606--1633. MR2442372 (2010b:60135)
- M.M. Meerschaert, Y. Zhang, B. Baeumer. Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 35 (2008), L17403.
- Meerschaert, Mark M.; Nane, Erkan; Vellaisamy, P. Fractional Cauchy problems on bounded domains. Ann. Probab. 37 (2009), no. 3, 979--1007. MR2537547 (2010h:60121)
- Nane, Erkan. Stochastic solutions of a class of higher order Cauchy problems in $\Bbb R\sp d$. Stoch. Dyn. 10 (2010), no. 3, 341--366. MR2671380 (2011e:60153)
- Pillai, R. N. On Mittag-Leffler functions and related distributions. Ann. Inst. Statist. Math. 42 (1990), no. 1, 157--161. MR1054728 (91e:60040)
- Repin, O. N.; Saichev, A. I. Fractional Poisson law. Radiophys. and Quantum Electronics 43 (2000), no. 9, 738--741 (2001). MR1910034
- RosiÅski, Jan. Tempering stable processes. Stochastic Process. Appl. 117 (2007), no. 6, 677--707. MR2327834 (2008g:60146)
- Scher, H.; Lax, M. Stochastic transport in a disordered solid. I. Theory. Phys. Rev. B (3) 7 (1973), no. 10, 4491--4502. MR0391854 (52 #12673)
- Seneta, Eugene. Regularly varying functions.Lecture Notes in Mathematics, Vol. 508. Springer-Verlag, Berlin-New York, 1976. v+112 pp. MR0453936 (56 #12189)
- Uchaikin, V. V.; Cahoy, D. O.; Sibatov, R. T. Fractional processes: from Poisson to branching one. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 18 (2008), no. 9, 2717--2725. MR2479327 (2009m:60097)
- Whitt, Ward. Stochastic-process limits.An introduction to stochastic-process limits and their application to queues.Springer Series in Operations Research. Springer-Verlag, New York, 2002. xxiv+602 pp. ISBN: 0-387-95358-2 MR1876437 (2003f:60005)
- Zaslavsky, G. M. Fractional kinetic equation for Hamiltonian chaos.Chaotic advection, tracer dynamics and turbulent dispersion (Gavi, 1993). Phys. D 76 (1994), no. 1-3, 110--122. MR1295881 (95h:58120)

This work is licensed under a Creative Commons Attribution 3.0 License.