The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off

References

  1. Bai, Zhidong; Yao, Jian-feng. Central limit theorems for eigenvalues in a spiked population model. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008), no. 3, 447-474. MR2451053 (2009j:60042)
  2. Bai, Z. D.; Silverstein, Jack W. No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices. Ann. Probab. 26 (1998), no. 1, 316-345. MR1617051 (99b:60041)
  3. Bai, Z. D.; Silverstein, Jack W. Exact separation of eigenvalues of large-dimensional sample covariance matrices. Ann. Probab. 27 (1999), no. 3, 1536-1555. MR1733159 (2001j:60058)
  4. Baik, Jinho; Ben Arous, Gérard; Péché, Sandrine. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33 (2005), no. 5, 1643-1697. MR2165575 (2006g:15046)
  5. Baik, Jinho; Silverstein, Jack W. Eigenvalues of large sample covariance matrices of spiked population models. J. Multivariate Anal. 97 (2006), no. 6, 1382-1408. MR2279680 (2008a:60063)
  6. Benaych-Georges, Florent; Nadakuditi, Raj Rao. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Adv. Math. 227 (2011), no. 1, 494-521. MR2782201
  7. Benaych-Georges, Florent; Nadakuditi, Raj Rao. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Adv. Math. 227 (2011), no. 1, 494-521. MR2782201
  8. Capitaine, M.; Donati-Martin, C. Strong asymptotic freeness for Wigner and Wishart matrices. Indiana Univ. Math. J. 56 (2007), no. 2, 767-803. MR2317545 (2008e:46079)
  9. Capitaine, Mireille; Donati-Martin, Catherine; Féral, Delphine. The largest eigenvalues of finite rank deformation of large Wigner matrices: convergence and nonuniversality of the fluctuations. Ann. Probab. 37 (2009), no. 1, 1-47. MR2489158 (2011d:15055)
  10. M. Capitaine, C. Donati-Martin, D. Féral, and M. Février. Free convolution with a semi-circular distribution and eigenvalues of spiked deformations of wigner matrices. submitted, 2010, arXiv:1006.3684
  11. Cartan, Henri. Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes. (French) Avec le concours de Reiji Takahashi Enseignement des Sciences. Hermann, Paris 1961 232 pp. MR0147623 (26 #5138)
  12. Chen, Louis H. Y. An inequality for the multivariate normal distribution. J. Multivariate Anal. 12 (1982), no. 2, 306-315. MR0661566 (83j:60019)
  13. Dozier, R. Brent; Silverstein, Jack W. Analysis of the limiting spectral distribution of large dimensional information-plus-noise type matrices. J. Multivariate Anal. 98 (2007), no. 6, 1099-1122. MR2326242 (2008h:62056)
  14. Dozier, R. Brent; Silverstein, Jack W. On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices. J. Multivariate Anal. 98 (2007), no. 4, 678-694. MR2322123 (2009d:60078)
  15. Fan, Ky. Maximum properties and inequalities for the eigenvalues of completely continuous operators. Proc. Nat. Acad. Sci., U. S. A. 37, (1951). 760-766. MR0045952 (13,661e)
  16. V. L. Girko. Theory of stochastic canonical equations. Vol. I, volume 535 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 2001.
  17. Haagerup, Uffe; Thorbjørnsen, Steen. A new application of random matrices: ${rm Ext}(Csp *sb {rm red}(Fsb 2))$ is not a group. Ann. of Math. (2) 162 (2005), no. 2, 711-775. MR2183281 (2009k:46121)
  18. Hachem, Walid; Loubaton, Philippe; Najim, Jamal. Deterministic equivalents for certain functionals of large random matrices. Ann. Appl. Probab. 17 (2007), no. 3, 875-930. MR2326235 (2008e:60071)
  19. Johnson, Ben A.; Abramovich, Yuri I.; Mestre, Xavier. MUSIC, G-MUSIC, and maximum-likelihood performance breakdown. IEEE Trans. Signal Process. 56 (2008), no. 8, part 2, 3944-3958. MR2517079
  20. Johnstone, Iain M. On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29 (2001), no. 2, 295-327. MR1863961 (2002i:62115)
  21. Mestre, Xavier. Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates. IEEE Trans. Inform. Theory 54 (2008), no. 11, 5113-5129. MR2589886 (2010h:62174)
  22. Mestre, Xavier; Lagunas, Miguel Ángel. Modified subspace algorithms for DoA estimation with large arrays. IEEE Trans. Signal Process. 56 (2008), no. 2, 598-614. MR2445537 (2010e:94065)
  23. Nadler, Boaz. Nonparametric detection of signals by information theoretic criteria: performance analysis and an improved estimator. IEEE Trans. Signal Process. 58 (2010), no. 5, 2746-2756. MR2789420 (2011j:94068)
  24. Novikov, E. A. Functionals and the random-force method in turbulence theory. Ž. Èksper. Teoret. Fiz. 47 1919-1926 (Russian); translated as Soviet Physics JETP 20 1965 1290-1294. MR0191516 (32 #8921)
  25. Pastur, L. A. A simple approach to the global regime of Gaussian ensembles of random matrices. Ukra. Mat. Zh. 57 (2005), no. 6, 790-817; translation in Ukrainian Math. J. 57 (2005), no. 6, 936-966 MR2208456 (2007d:82079)
  26. Paul, Debashis. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statist. Sinica 17 (2007), no. 4, 1617-1642. MR2399865 (2009d:62085)
  27. J.W. Silverstein and S. Choi. Analysis of the limiting spectral distribution of large dimensional random matrices. Journal of Multivariate Analysis, 52(2):175-192, 1995.
  28. P. Vallet, P. Loubaton, and X. Mestre. Improved Subspace Estimation for Multivariate Observations of High Dimension: The Deterministic Signal Case. submitted, 2010. arXiv: 1002.3234.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.