No.1401
’²˜a‰ðÍŠw‚Æ”ñüŒ`•Î”÷•ª•û’öŽ®
Harmonic Analysis and Nonlinear Partial Differential Equations
Œ¤‹†W‰ï•ñW
@
2004/07/05`2004/07/07
ŽRè@¹’j@
Masao@Yamazaki
@
–ځ@ŽŸ
@
1. On global solutions for wave equations under the null condition in 3 space dimensions (Harmonic Analysis and Nonlinear Partial Differential Equations)---1
@@@@“Œ–k‘åŠwî•ñ‰ÈŠwŒ¤‹†‰È@@@’†‘º ½@(Nakamura, Makoto)
@
2. MODIFIED WAVE OPERATORS FOR NONLINEAR SCHRODINGER EQUATIONS WITH STARK EFFECTS (Harmonic Analysis and Nonlinear Partial Differential Equations)---31
@@@@ŠwK‰@‘åŠw—Šw•” / “ú–{‘åŠw—HŠw•”@@@‰º‘º –¾—m / —˜ªì ‘@(Shimomura, Akihiro / Tonegawa, Satoshi)
@
3. Upper bound of the best constant of the Trudinger-Moser inequality and its application to the Gagliardo-Nirenberg inequality (Harmonic Analysis and Nonlinear Partial Differential Equations)---41
@@@@“Œ–k‘åŠw—ŠwŒ¤‹†‰È”ŠwêU / “Œ–k‘åŠw—ŠwŒ¤‹†‰È”ŠwêU / “Œ–k‘åŠw—ŠwŒ¤‹†‰È”ŠwêU@@@¬‰’ ‰p—Y / ²“¡ “¾Žu / ˜a“co GŒõ@(Kozono, Hideo / Sato, Tokushi / Wadade, Hidemitsu)
@
4. $L^p$ estimates for some integral operators (Harmonic Analysis and Nonlinear Partial Differential Equations)---------------------48
@@@@“ŒŠC‘åŠwŠC—mŠw•”@@@“¡ˆä M•F@(Fujii, Nobuhiko)
@
5. TRANSPLANTATION THEOREMS AND THEIR APPLICATIONS (Harmonic Analysis and Nonlinear Partial Differential Equations)-----------------58
@@@@‹à‘ò‘åŠwHŠw•”@@@Š¨r —Tˆê@(Kanjin, Yuichi)
@
6. Weighted $H^p$ spaces on a domain and singular integrals (Harmonic Analysis and Nonlinear Partial Differential Equations)--------73
@@@@“Œ‹ž—Žq‘åŠw•¶—Šw•”@@@‹{’n »•F@(Miyachi, Akihiko)
@
7. Rotating Navier-Stokes Equations in $\mathbb{R}^3_+$ with Initial Data Nondecreasing at Infinity : The Ekman Boundary Layer Problem (Harmonic Analysis and Nonlinear Partial Differential Equations)---82
@@@@Darmstadt University of Technology@@@Saal, Jurgen
@
8. THE NAVIER-STOKES EQUATIONS IN $\mathbb{R}^n$ WITH LINEARLY GROWING INITIAL DATA (Harmonic Analysis and Nonlinear Partial Differential Equations)---109
@@@@‘ˆî“c‘åŠw—HŠw•”@@@àV“c ’ˆL@(Sawada, Okihiro)
@
9. $L^p$ estimates for the Stokes equations around a rotating body (Harmonic Analysis and Nonlinear Partial Differential Equations)---125
@@@@VŠƒ‘åŠwHŠw•”@@@•H“c r–¾@(Hishida, Toshiaki)
@
10. On a removable isolated singularity theorem for the stationary Navier-Stokes equations (Harmonic Analysis and Nonlinear Partial Differential Equations)---152
@@@@“Œ–k‘åŠw—ŠwŒ¤‹†‰È / “Œ–k‘åŠw—ŠwŒ¤‹†‰È@@@/ ¬‰’ ‰p—Y@(Kim, Hyunseok / Kozono, Hideo)
@