No.1436
”­“W•û’öŽ®‚Ɖð‚Ì‘Q‹ß‰ðÍ
Evolution Equations and Asymptotic Analysis of Solutions
Œ¤‹†W‰ï•ñW
@
2004/11/24`2004/11/26
ŠÛ”ö@Œ’“ñ
Kenji@Maruo
@
–ځ@ŽŸ
@
1. Global structure of solutions for the 1-D Ginzburg-Landau equation (Evolution Equations and Asymptotic Analysis of Solutions)-----1
@@@@—´’J‘åŠw—HŠw•”@@@¬™ ‘Žj@(Kosugi, Satoshi)
@
2. Quasi-variational inequalities for phase transitions (Evolution Equations and Asymptotic Analysis of Solutions)------------------22
@@@@ç—t‘åŠwŽ©‘R‰ÈŠwŒ¤‹†‰È@@@ˆ¢‘] ‰ë‘ׁ@(Aso, Masayasu)
@
3. EXPONENTIAL ATTRACTORS FOR EVOLUTION EQUATIONS (Evolution Equations and Asymptotic Analysis of Solutions)------------------------45
@@@@Universitat Stuttgart, Fakultat Mathematik / Universite de Poitiers, Laboratoire de Mathematiques et Applications / Universitat Stuttgart, Fakultat Mathematik@@@Efendiev, M. / Miranville, A. / Zelik, S.
@
4. Some recent results on inverse problems arising from phase-field models (Evolution Equations and Asymptotic Analysis of Solutions)---66
@@@@Dipartimento di Matematica, Politecnico di Milano / Dipartimento di Matematica, Universita di Bologna / Dipartimento di Matematica, Universita degli Studi di Milano / Dipartimento di Matematica, Universita degli Studi di Firenze@@@Colombo, Fabrizio / Guidetti, Davide / Lorenzi, Alfredo / Vespri, Vincenzo
@
5. Nonlinear Schrodinger equations with superposed delta-functions as initial data (Evolution Equations and Asymptotic Analysis of Solutions)---88
@@@@‹{è‘åŠw‹³ˆç•¶‰»Šw•”@@@–k ’¼‘ׁ@(Kita, Naoyasu)
@
6. The complex Ginzburg-Landau equation on general domain (Evolution Equations and Asymptotic Analysis of Solutions)---------------107
@@@@“Œ‹ž—‰È‘åŠw—Šw•” / “Œ‹ž—‰È‘åŠw—Šw•”@@@‰ª‘ò “o / ‰¡“c ’q–¤@(Okazawa, Noboru / Yokota, Tomomi)
@
7. A priori bounds for global solutions of nonlinear heat equations in general domain (Evolution Equations and Asymptotic Analysis of Solutions)---117
@@@@‘ˆî“c‘åŠw—HŠwŒ¤‹†‰È@@@‚Žs ‹±Ž¡@(Takaichi, Kyoji)
@
8. Existence of global solutions for a semilinear parabolic Cauchy problem (Evolution Equations and Asymptotic Analysis of Solutions)---127
@@@@–¾Ž¡‘åŠw—HŠw•”@@@œA£ @Œõ@(Hirose, Munemitsu)
@
9. Generation of an interface of competition-diffusion systems with large interaction (Evolution Equations and Asymptotic Analysis of Solutions)---145
@@@@‘ˆî“c‘åŠw—HŠwŒ¤‹†‰È@@@Žá‹· “O@(Wakasa, Toru)
@
10. Asymptotic Behavior of Solutions for an Interface Equation : Interface Dynamics and Center-of-Mass Motions (Evolution Equations and Asymptotic Analysis of Solutions)---155
@@@@L“‡‘åŠw—ŠwŒ¤‹†‰È@@@‰ª“c _Žk@(Okada, Koji)
@
11. A significant relation between cross-diffusion and reaction-diffusion (Evolution Equations and Asymptotic Analysis of Solutions)---167
@@@@ŠâŽè‘åŠwl•¶ŽÐ‰ï‰ÈŠw•” / –¾Ž¡‘åŠw—HŠw•” / —´’J‘åŠw—HŠw•”@@@”Ñ“c ‰ël / ŽO‘º ¹‘× / “ñ‹{ L˜a@(Iida, Masato / Mimura, Masayasu / Ninomiya, Hirokazu)
@
12. Numerical Methods for Density Variation Fluid Flow Analysis (Evolution Equations and Asymptotic Analysis of Solutions)---------187
@@@@–{“c‹ZpŒ¤‹†Š˜aŒõŠî‘b‹ZpŒ¤‹†ƒZƒ“ƒ^[@@@—L”n •qK@(Arima, Toshiyuki)
@