No.1588
”ñüŒ`”­“W•û’öŽ®‚ÆŒ»Û‚̐”—
Nonlinear Evolution Equatioins and Mathematical Modeling
RIMS Œ¤‹†W‰ï•ñW
@
2007/10/22`2007/10/24
ŽR“c@‹`—Y
Yoshio Yamada
@
–ځ@ŽŸ
@
1. Numerical Simulation on Tumor Invasion Model Affected by Heat Shock Protein (Nonlinear Evolution Equations and Mathematical Modeling)---1
@@@@‹ß‹E‘åŠwƒVƒXƒeƒ€HŠw‰È / ‹ß‹E‘åŠwHŠw•”@@@–ö —Yˆê / ˆÉ“¡ º•v@(Yanagi, Yuichi / Ito, Akio)
@
2. Interface motion of a negative crystal and its analysis (Nonlinear Evolution Equations and Mathematical Modeling)----------------23
@@@@Šò•Œ‘åŠw‹³ˆçŠw•” / ‹{è‘åŠwHŠw•”@@@Î“n “NÆ / –îè ¬r@(Ishiwata, Tetsuya / Yazaki, Shigetoshi)
@
3. On Time Local Solvability for the Motion of an Unbounded Volume of Viscous Incompressible Fluid (Nonlinear Evolution Equations and Mathematical Modeling)---30
@@@@•‘ H‹Æ‘åŠw / –kŠC“¹î•ñ‘åŠwî•ñƒƒfƒBƒAŠw•” / Œcœä‹`m‘åŠw—HŠw•”@@@Š£ Ÿ–ç / ¼ˆä L–ç / ’J ‰·”V@(Inui, Katsuya / Matsui, Shin'ya / Tani, Atusi)
@
4. LOCAL SOLVABILITY OF A CLASS OF NONSTATIONARY SEMILINEAR SOBOLEV TYPE EQUATIONS (Nonlinear Evolution Equations and Mathematical Modeling)---46
@@@@Chelyabinsk State University@@@Fedorov, V.E.
@
5. Regularity of solutions for some elliptic equations with nonlinear boundary conditions (Nonlinear Evolution Equations and Mathematical Modeling)---62
@@@@‘ˆî“c‘åŠwæi—HŠwŒ¤‹†‰È / ‘ˆî“c‘åŠwæi—HŠw•”@@@Œ´“c ˆê / ‘å’J Œõt@(Harada, Junichi / Otani, Mitsuharu)
@
6. Solutions having boundary layers to a nonlinear elliptic equation on a spherical cap (Nonlinear Evolution Equations and Mathematical Modeling)---74
@@@@/ ‘åã•{—§‘åŠwHŠwŒ¤‹†‰È / —´’J‘åŠw—HŠw•”@@@/ •Ç’J ŠìŒp / “ñ‹{ L˜a@(Bandle, Catherine / Kabeya, Yoshitsugu / Ninomiya, Hirokazu)
@
7. Stationary patterns for a cooperative model with nonlinear diffusion (Nonlinear Evolution Equations and Mathematical Modeling)---87
@@@@‘ˆî“c‘åŠwŠîŠ²—HŠwŒ¤‹†‰È@@@‘åŽ} ˜a_@(Oeda, Kazuhiro)
@
8. Rate of approach of two solutions for a semilinear heat equation with power nonlinearity (Nonlinear Evolution Equations and Mathematical Modeling)---99
@@@@“Œ–k‘åŠw—ŠwŒ¤‹†‰È@@@¯–ì ^Ž÷@(Hoshino, Masaki)
@
9. Interactive dynamics of two interfaces in a reaction diffusion system (Nonlinear Evolution Equations and Mathematical Modeling)---118
@@@@‹ãB‘åŠw”—ŠwŒ¤‹†‰@ / ‹{è‘åŠwHŠw•”@@@‰h Lˆê˜Y / ’Òì ‹œ@(Ei, Shin-Ichiro / Tsujikawa, Tohru)
@
10. Existence of Solutions with Moving Singularities for a Semilinear Parabolic Equation (Nonlinear Evolution Equations and Mathematical Modeling)---124
@@@@“Œ–k‘åŠw—ŠwŒ¤‹†‰È / “Œ–k‘åŠw—ŠwŒ¤‹†‰È@@@²“¡ ãđå / –ö“c ‰p“ñ@(Sato, Shota / Yanagida, Eiji)
@
11. Blow-up at space infinity for nonlinear heat equations (Nonlinear Evolution Equations and Mathematical Modeling)---------------135
@@@@“Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È@@@”~“c “TW@(Umeda, Noriaki)
@