[1] The Intrinsic Hodge Theory of p-adic Hyperbolic Curves (Oberwolfach 1996-07). PDF

[2] The Intrinsic Hodge Theory of p-adic Hyperbolic Curves (ICM 98). PDF

[3] The Intrinsic Hodge Theory of p-adic Hyperbolic Curves (Nara 1998-12). PDF

[4] The Hodge-Arakelov Theory of Elliptic Curves (Berkeley 1999-09). PDF

[5] The Hodge-Arakelov Theory of Elliptic Curves (Utrecht 2000-06). PDF

[6] The Hodge-Arakelov Theory of Elliptic Curves (Hotaka 2000-07). PDF

[7] A Brief Introduction to Inter-universal Geometry (Tokyo 2004-01). PDF

[8] Categorical Representation of Arithmetic Log Schemes – with Applications to the Arithmetic of
@@Elliptic Curves (Tokyo 2004-02). PDF

[9] Anabelian Geometry from an Inter-universal Point of View (RIMS Kyoto 2004-09). PDF

[10] Absolute Anabelian Cuspidalizations (RIMS Kyoto 2005-02). PDF

[11] Tempered Anabelian Geometry (Hiroshima 2005-02). PDF

[12] A Brief Survey of the Geometry of Categories (Okayama 2005-05). PDF

[13] Inter-universal Hodge-Arakelov Theory (RIMS Kyoto 2005-12). PDF

[14] A Survey of Absolute p-adic Anabelian Geometry (RIMS Kyoto 2006-11). PDF

[15] Inter-universal Teichmuller Theory: a Progress Report (RIMS Kyoto 2010-10). Abstract PDF

[16] Invitation to Inter-universal Teichmuller Theory (RIMS Kyoto 2012-12). PDF

[17] Invitation to Inter-universal Teichmuller Theory (Expanded Version) (Tokyo 2013-06). PDF


[18] Invitation to Inter-universal Teichmuller Theory (Three Hour Version) (RIMS Kyoto 2014-02). PDF

[19] Invitation to Inter-universal Teichmuller Theory (2+2 Hour Version) (Kumamoto 2014-05). PDF

Travel and Lectures of Shinichi Mochizuki