No.1529
’²˜a‰ðÍŠw‚Æ”ñüŒ`•Î”÷•ª•û’öŽ®
Harmonic Analysis and Nonlinear Partial Differential Equations
RIMS Œ¤‹†W‰ï•ñW
@
2006/07/03`2006/07/05
’ç@—_Žu—Y
Yoshio Tsutsumi
@
–Ú@ŽŸ
@
1. THE NAVIER-STOKES FLOW WITH LIPSCHITZ DATA(Harmonic Analysis and Nonlinear Partial Differential Equations)------------------------1
@@@@‘ˆî“c‘åŠw—HŠwp‰@”—‰ÈŠw@@@àV“c ’ˆL@(SAWADA, OKIHIRO)
@
2. DYNAMICAL ZETA FUNCTIONS FOR EXPANDING SEMI-FLOWS(Harmonic Analysis and Nonlinear Partial Differential Equations)----------------19
@@@@–kŠC“¹‘åŠw—Šw•”@@@’Òˆä ³l@(TSUJII, MASATO)
@
3. “ÁˆÙ’l•ª‰ð‚ƃEƒF[ƒuƒŒƒbƒg‚ðŽg‚Á‚½‰æ‘œˆ—(’²˜a‰ðÍŠw‚Æ”ñüŒ`•Î”÷•ª•û’öŽ®)-------------------------------------------------------26
@@@@‘å㋳ˆç‘åŠw”—‰ÈŠwêU / ‘åã“d‹C’ÊM‘åŠw”—‰ÈŠwŒ¤‹†ƒZƒ“ƒ^[ / ‘å㋳ˆç‘åŠwî•ñ‰ÈŠwêU@@@ˆ°–ì —²ˆê / äÝ‘ã •Žj / Žç–{ W@(Ashino, Ryuichi / Mandai, Takeshi / Morimoto, Akira)
@
4. Optimal Control Problem Associated with Jump-Diffusion Processes and Optimal Stopping(Harmonic Analysis and Nonlinear Partial Differential Equations)---42
@@@@ˆ¤•Q‘åŠw—Šw•”@@@Îì •ÛŽu@(Ishikawa, Yasushi)
@
5. Singular integral and cancellation property(Harmonic Analysis and Nonlinear Partial Differential Equations)----------------------64
@@@@“ŒŠC‘åŠwŠJ”­HŠw•”@@@¬X N—Y@(Komori, Yasuo)
@
6. Asymptotic stability of small solitons for NLS with potential(Harmonic Analysis and Nonlinear Partial Differential Equations)----74
@@@@‹ãB‘åŠw”—ŠwŒ¤‹†‰@@@@…’¬ “O@(Mizumachi, Tetsu)
@
7. THE INCLUSION BETWEEN BESOV SPACES AND MODULATION SPACES(Harmonic Analysis and Nonlinear Partial Differential Equations)---------87
@@@@‘åã‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È@@@•y“c ’¼l@(TOMITA, NAOHITO)
@
8. Functional differential equations of a type similar to $f' (x) = 2 f (2x +1)-2 f (2x-1)$ and its application to Poisson's equation(Harmonic Analysis and Nonlinear Partial Differential Equations)---97
@@@@“Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È / “Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È@@@àV–ì ‰ÃG / •Ä“c „@(Sawano, Yoshihiro / Yoneda, Tsuyoshi)
@
9. On the infinite dimensional approximation of solution for the KdV equation on the torus(Harmonic Analysis and Nonlinear Partial Differential Equations)---110
@@@@_ŒË‘åŠw—Šw•”@@@‚‰ª G•v@(Takaoka, Hideo)
@
10. Nonexistence of self-similar singularities for the 3D incompressible Euler equations(Harmonic Analysis and Nonlinear Partial Differential Equations)---123
@@@@Department of Mathematics, Sungkyunkwan University@@@Chae, Dongho
@