No.966
非線形発展方程式とその応用
Nonlinear Evolution Equations and Applications
 
1995/07/26〜1995/07/28
岡沢 登
Noboru Okazawa
 
目 次
 
1. ON EXISTENCE OF VISCOSITY SOLUTIONS AND WEAK SOLUTIONS TO THE CAUCHY PROBLEM FOR $u_t = u\Delta u-\gamma\mid\Delta u \mid^2$(Nonlinear Evolution Equations and Applications)---1
    DEPARTMENT OF MATHEMATICS, WASEDA UNIVERSITY TOKYO / DEPARTMENT OF APPLIED PHYSICS, WASEDA UNIVERSITY TOKYO   穴田 浩一 / 堤 正義 (ANADA, KOUICHI / TSUTSUMI, MASAYOSHI)
 
2. Regularizing effects for a class of Hamilton-Jacobi equations(Nonlinear Evolution Equations and Applications)--------------------18
    CEREMADE, Univ. Paris-Dauphine / CEREMADE, Univ. Paris-Dauphine   Arisawa, Mariko / Tourin, Agnes
 
3. Nonlinear $m$-sectorial operators and time-dependent Ginzburg-Landau equations(Nonlinear Evolution Equations and Applications)---33
    東京理科大学理学部   宇内 昭人 (UNAI, AKIHITO)
 
4. ABSTRACT QUASILINEAR INTEGRODIFFERENTIAL EQUATIONS OF HYPERBOLIC TYPE(Nonlinear Evolution Equations and Applications)------------41
    Department of Mathematics, School of Education, Waseda University   岡 裕和 (Oka, Hirokazu)
 
5. Operator Matrices and Systems of Evolution Equations(Nonlinear Evolution Equations and Applications)-----------------------------61
    Department of Mathematics, Faculty of Science, Hiroshima University   ENGEL, KLAUS-J.
 
6. Partial regularity for electrochemical machining with threshold current(Nonlinear Evolution Equations and Applications)----------81
       WEISS, GEORG SEBASTIAN
 
7. Asymptotic behaviors of radially symmetric solutions of $\Box u = \mid u \mid^p$ for super critical values $p$ in high dimensions(Nonlinear Evolution Equations and Applications)---88
    Department of Mathematics, Faculty of Science, Hokkaido University / Department of Mathematics, Faculty of Science, Hokkaido University   久保 英夫 / 久保田 幸次 (KUBO, HIDEO / KUBOTA, KOJI)
 
8. Life-span of Classical Solutions to Nonlinear Wave Equations in Four Space Dimensions(Nonlinear Evolution Equations and Applications)---95
    Department of Mathematics, Fudan University   Li, Ta-tsien
 
9. GLOBAL SOLUTIONS TO THE SEMILINEAR WAVE EQUATION FOR LARGE SPACE DIMENSIONS(Nonlinear Evolution Equations and Applications)-----110
    Institute of Mathematics, Bulgarian Academy of Sciences   GEORGIEV, VLADIMIR
 
10. Asymptotic decay toward the planar rarefaction waves of solutions for viscous conservation laws in several space dimensions(Nonlinear Evolution Equations and Applications)---116
    Graduate School of Mathematics, Kyushu University   伊藤 一男 (Ito, Kazuo)
 
11. ASYMPTOTIC BEHAVIOR OF BLOWUP SOLUTIONS OF A PARABOLIC EQUATION WITH THE P-LAPLACIAN(Nonlinear Evolution Equations and Applications)---136
    Department of Mathematical Sciences, University of Tokyo / Department of Mathematical Sciences, University of Tokyo   藤井 中 / 太田 雅人 (FUJII, ATARU / OHTA, MASAHITO)
 
12. Structure of radial solutions to $\Delta$u + ${1}\above1pt{2}$x $\cdot \nabla u + \lambda u + \mid u \mid^{p-1} u$ = 0 in $R^n$(Nonlinear Evolution Equations and Applications)---151
    早稲田大学理工学部   廣瀬 宗光 (Hirose, Munemitsu)
 
13. On the exterior problem of compressible Navier-Stokes equation(Nonlinear Evolution Equations and Applications)-----------------170
    Institute of Mathematics, University of Tsy[u]kuba   小林 孝行 (Kobayashi, Takayuki)