No.1693
”ñüŒ`”­“W•û’öŽ®‚ÆŒ»Û‚̐”—
Nonlinear evolution equations and mathematical modeling
RIMS Œ¤‹†W‰ï•ñW
@
2009/10/20`2009/10/23
ˆ¤–؁@–L•F
Toyohiko Aiki
@
–ځ@ŽŸ
@
1. Œ`ó‹L‰¯‡‹àƒƒCƒ„[‚̉^“®‚ð‹Lq‚·‚é”M’e«•û’öŽ®‚Ì“±o (”ñüŒ`”­“W•û’öŽ®‚ÆŒ»Û‚̐”—)---------------------------------------------1
@@@@ŠâŽè‘åŠwl•¶ŽÐ‰ï‰ÈŠw•” / ‘åã‘åŠw‘åŠw‰@Šî‘bHŠwŒ¤‹†‰È / ‰F•”H‹Æ‚“™ê–åŠwZ@@@‰ª•” ^–ç / —é–Ø ‹M / ‹gì Žü“ñ@(Okabe,Shinya / Suzuki,Takashi / Yoshikawa,Shuji)
@
2. Higher-order Schrodinger operators with singular potentials (Nonlinear evolution equations and mathematical modeling)------------11
@@@@“Œ‹ž—‰È‘åŠw—Šw•” / “Œ‹ž—‰È‘åŠw—ŠwŒ¤‹†‰È / “Œ‹ž—‰È‘åŠw—Šw•”@@@‰ª‘ò “o / “c‘º ”ŽŽu / ‰¡“c ’q–¤@(Okazawa,Noboru / Tamura,Hiroshi / Yokota,Tomomi)
@
3. Finite dimensional reduction for a reaction diffusion problem with obstacle potential (Nonlinear evolution equations and mathematical modeling)---28
@@@@Dipartimento di Matematica "F.Casorati", Universita di Pavia / Departement [Department] of Mathematics, University of Surrey@@@Segatti,Antonio / Zelik,Sergey
@
4. $L^p$ well-posedness for the complex Ginzburg-Landau equation (Nonlinear evolution equations and mathematical modeling)----------38
@@@@L“‡‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È@@@¼–{ •q—²@(Matsumoto,Toshitaka)
@
5. Holder continuity for some degenerate parabolic equation and its application (Nonlinear evolution equations and mathematical modeling)---45
@@@@“Œ–k‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È / “Œ–k‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È@@@…–ì «Ži / ¬ì ‘썎@(Mizuno,Masashi / Ogawa,Takayoshi)
@
6. Transition layers for a bistable reaction-diffusion equation in heterogeneous media (Nonlinear evolution equations and mathematical modeling)---57
@@@@‘ˆî“c‘åŠw‚“™Šw‰@@@@‰Y–ì “¹—Y@(URANO,Michio)
@
7. Local and global well-posedness for the KdV equation at the critical regularity (Nonlinear evolution equations and mathematical modeling)---68
@@@@‹ž“s‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È@@@ŠÝ–{ “W@(Kishimoto,Nobu)
@
8. RATE OF CONVERGENCE FOR A GALERKIN SCHEME APPROXIMATING A TWO-SCALE REACTION-DIFFUSION SYSTEM WITH NONLINEAR TRANSMISSION CONDITION (Nonlinear evolution equations and mathematical modeling)---85
@@@@CENTER FOR ANALYSIS SCIENTIFIC COMPUTING AND APPLICATIONS(CASA), DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, INSTITUTE OF COMPLEX MOLECULAR SYSTEMS(ICMS), EINDHOVEN UNIVERSITY OF TECHNOLOGY / DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SUSSEX@@@MUNTEAN,ADRIAN / LAKKIS,OMAR
@
9. Propagating waves in wave front interaction model (Nonlinear evolution equations and mathematical modeling)----------------------99
@@@@–¾Ž¡‘åŠw—HŠw•”@@@“ñ‹{ L˜a@(Ninomiya,Hirokazu)
@
10. Global solution to a phase transition problem of the Allen-Cahn type (Nonlinear evolution equations and mathematical modeling)---104
@@@@Dipartimento di Matematica "F. Casorati", Universita di Pavia / Dipartimento di Matematica "F. Casorati", Universita di Pavia / Dipartimento di Ingegneria Civile, Universita di Roma "Tor Vergata" / Weierstrass-Institut fur Angewandte Analysis und Stochastik@@@Colli,Pierluigi / Gilardi,Gianni / Podio-Guidugli,Paolo / Sprekels,Jurgen
@
11. Blow-up for some parabolic equations with nonlinear boundary conditions (Nonlinear evolution equations and mathematical modeling)---111
@@@@‘ˆî“c‘åŠw—HŠwp‰@ / ‘ˆî“c‘åŠw—HŠwp‰@@@@Œ´“c ˆê / ‘å’J Œõt@(Harada,Junichi / Otani,Mitsuharu)
@
12. Global existence and blow up for harmonic map heat flows into ellipsiod : Dedicated to Professor Nobuyuki Kenmochi on the occasion of his retirement from Chiba University (Nonlinear evolution equations and mathematical modeling)---119
@@@@‘ˆî“c‘åŠw—HŠwp‰@@@@’ç ³‹`@(Tsutsumi,Masayoshi)
@
13. EXISTENCE AND STABILITY OF A TRAVELING WAVE SOLUTION ON A 3-COMPONENT REACTION-DIFFUSION MODEL IN COMBUSTION (Nonlinear evolution equations and mathematical modeling)---132
@@@@–¾Ž¡‘åŠwæ’[”—‰ÈŠwƒCƒ“ƒXƒeƒBƒeƒ…[ƒg / –¾Ž¡‘åŠw—HŠw•”@@@’r“c K‘¾ / ŽO‘º ¹‘ׁ@(IKEDA,KOTA / MIMURA,MASAYASU)
@
14. Dimension estimate of global attractors for a chemotaxis-growth system and its discretizations (Nonlinear evolution equations and mathematical modeling)---143
@@@@“Œ‹žˆã‰ÈŽ•‰È‘åŠw@@@’†Œû ‰xŽj@(Nakaguchi,Etsushi)
@
15. Quasilinear thermoviscoelastic systems. Large time regular solutions (Nonlinear evolution equations and mathematical modeling)---151
@@@@Systems Research Institute, Polish Academy of SciencesEInstitute of Mathematics and Cryptology, Cybernetics Faculty, Military University of Technology / Institute of Mathematics, Polish Academy of SciencesEInstitute of Mathematics and Cryptology, Cybernetics Faculty, Military University of Technology@@@PAWLOW,IRENA / ZAJACZKOWSKI,WOJCIECH M.
@
16. Interface evolution by tristable Allen-Cahn type equation with collision free condition (Nonlinear evolution equations and mathematical modeling)---168
@@@@–¾Ž¡‘åŠwæ’[”—‰ÈŠwƒCƒ“ƒXƒeƒBƒ`ƒ…[ƒg [ƒCƒ“ƒXƒeƒBƒeƒ…[ƒg]@@@‘å’Ë Šx@(Ohtsuka,Takeshi)
@
17. The existence of time global solutions for tumor invasion models (Nonlinear evolution equations and mathematical modeling)-----180
@@@@‹ß‹E‘åŠwHŠw•” / ‹ß‹E‘åŠwHŠw•”@@@‰Á”[ —¬ / ˆÉ“¡ º•v@(KANO,RISEI / ITO,AKIO)
@