No.1795
‘g‡‚¹˜_“I•\Œ»˜_‚ÌŠg‚ª‚è
Topics in Combinatorial Representation Theory
RIMS Œ¤‹†W‰ï•ñW
@
2011/10/11`2011/10/14
â–{@—æ•ô
Reiho Sakamoto
@
–ځ@ŽŸ
@
1. On some combinatorial and algebraic properties of Dunkl elements (Topics in Combinatorial Representation Theory)------------------1
@@@@‹ž“s‘åŠw”—‰ðÍŒ¤‹†Š@@@KIRILLOV,ANATOL N.
@
2. Some developments on Schur functors and dominant dimension (Topics in Combinatorial Representation Theory)-----------------------45
@@@@Institute of Mathematics, Chinese Academy of Sciences@@@Fang,Ming
@
3. KR ƒNƒŠƒXƒ^ƒ‹‚̃eƒ“ƒ\ƒ‹Ï‚Æ Demazure ƒNƒŠƒXƒ^ƒ‹(‘g‡‚¹˜_“I•\Œ»˜_‚ÌŠg‚ª‚è)--------------------------------------------------------59
@@@@“Œ‹ž‘åŠw‘åŠw‰@”—‰ÈŠwŒ¤‹†‰È@@@’¼ˆä Ž”V@(Naoi,Katsuyuki)
@
4. Representation theory in non-integral rank (Topics in Combinatorial Representation Theory)---------------------------------------70
@@@@“Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È@@@X ^Ž÷@(Mori,Masaki)
@
5. Weyl modules and principal series modules (Topics in Combinatorial Representation Theory)----------------------------------------83
@@@@“ޗǍH‹Æ‚“™ê–åŠwZ@@@‹gˆä –L@(Yoshii,Yutaka)
@
6. factorial Schur function ‚ɑ΂·‚é Tokuyama-type formula (‘g‡‚¹˜_“I•\Œ»˜_‚ÌŠg‚ª‚è)-----------------------------------------------88
@@@@–k—¢‘åŠwˆê”Ê‹³ˆç•”@@@’†‹Ø –ƒ‹M@(Nakasuji,Maki)
@
7. Smallest complex nilpotent orbits with real points (Topics in Combinatorial Representation Theory)------------------------------100
@@@@“Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È@@@‰œ“c —²K@(Okuda,Takayuki)
@
8. A generalized Cartan decomposition for connected compact Lie groups and its application (Topics in Combinatorial Representation Theory)---117
@@@@“Œ‹ž‘åŠw‘åŠw‰@”—‰ÈŠwŒ¤‹†‰È@@@“c’† —Yˆê˜Y@(Tanaka,Yuichiro)
@
9. A BASIS FOR THE MODULE OF DIFFERENTIAL OPERATORS OF ORDER 2 ON THE BRAID HYPERPLANE ARRANGEMENT (Topics in Combinatorial Representation Theory)---135
@@@@–kŠC“¹‘åŠw—ŠwŒ¤‹†‰@@@@’†“‡ ‹K”Ž@(NAKASHIMA,NORIHIRO)
@
10. Mapping class group, Donaldson-Thomas theory and S-duality (Topics in Combinatorial Representation Theory)---------------------144
@@@@–¼ŒÃ‰®‘åŠw‘½Œ³”—‰ÈŠwŒ¤‹†‰È@@@’·”ö Œ’‘¾˜Y@(Nagao,Kentaro)
@
11. THE NUMBER OF ARROWS IN THE QUIVER OF TILTING MODULES OVER A PATH ALGEBRA OF TYPE $A$ AND $D$ (Topics in Combinatorial Representation Theory)---154
@@@@‘åã‘åŠwî•ñ‰ÈŠwŒ¤‹†‰È@@@‰Á£ —Ɉê@(KASE,RYOICHI)
@
12. KHOVANOV-LAUDA-ROUQUIER ALGEBRAS AND CRYSTAL BASES FOR FINITE CLASSICAL TYPE (Topics in Combinatorial Representation Theory)---163
@@@@‘åã‘åŠwî•ñ‰ÈŠwŒ¤‹†‰È@@@PARK,EUIYONG
@
13. A SUPER ANALOG OF THE KHOVANOV-LAUDA-ROUQUIER ALGEBRAS (Topics in Combinatorial Representation Theory)-------------------------179
@@@@“Œ‹ž‘åŠwIPMU@@@“y‰ª r‰î@(TSUCHIOKA,SHUNSUKE)
@
14. A Pfaffian analogue of the Hankel determinants and the Selberg integrals (Topics in Combinatorial Representation Theory)-------189
@@@@—®‹…‘åŠw‹³ˆçŠw•” / Institut Camille Jordan Universite Claude Bernard Lyon 1@@@Îì ‰ë—Y / ZENG Jiang@(ISHIKAWA,Masao / ZENG,Jiang)
@
15. A generalization of the Mehta-Wang determinant and the Askey-Wilson polynomials (Topics in Combinatorial Representation Theory)---204
@@@@—®‹…‘åŠw‹³ˆçŠw•” / ˜a‰ÌŽR‘åŠw‹³ˆçŠw•”@@@Îì ‰ë—Y / “cì —T”V@(Ishikawa,Masao / Tagawa,Hiroyuki)
@
16. KKR TYPE BIJECTION FOR $E ^{(1)}_6$ : ALGORITHMS AND EXAMPLES (Topics in Combinatorial Representation Theory)------------------224
@@@@‘åã‘åŠwŠî‘bHŠwŒ¤‹†‰È / ‘åã‘åŠwŠî‘bHŠwŒ¤‹†‰È@@@”öŠp ³l / ²–ì é³@(OKADO,MASATO / SANO,NOBUMASA)
@