* このページに掲載している原稿は 速報ファイル です。
* These papers are "unissued version".
RIMS Kôkyûroku
No.1895
反映原理と巨大基数の集合論
Reflection principles and set theory of large cardinals
RIMS 研究集会報告集
 
2013/09/09〜2013/09/12
渕野 昌
Sakae Fuchino
 
目 次
 
1. RELATIVE DEFINABILITY (Reflection principles and set theory of large cardinals)---------------------------------------------------1
    SCHOOL OF MATHEMATICS, UNIVERSITY OF EAST ANGLIA   ASPERO,DAVID
 
2. $P_\lambda$-FILTERS AND REGULAR EMBEDDINGS OF BOOLEAN ALGEBRAS (Reflection principles and set theory of large cardinals)---------12
    Institute of Mathematics, University of Silesia   BLASZCZYK,ALEKSANDER
 
3. A VARIANT PROOF OF Con$(\mathfrak{b}<\mathfrak{a})$\ (Reflection principles and set theory of large cardinals)-------------------16
    神戸大学システム情報学研究科 / 神戸大学システム情報学研究科   BRENDLE,JORG / BROOKE-TAYLOR,ANDREW D.
 
4. LARGE CARDINALS, FORCING AND REFLECTION (Reflection principles and set theory of large cardinals)--------------------------------26
    Carnegie Mellon U.   CUMMINGS,JAMES
 
5. A reflection principle formulated in terms of games (Reflection principles and set theory of large cardinals)--------------------37
    神戸大学大学院システム情報学研究科 / 神戸大学自然科学系先端融合研究環重点研究部   渕野 昌 / 薄葉 季路 (Fuchino,Sakae / Usuba,Toshimichi)
 
6. Forcing proofs of Ramsey's Hindman's Theorems (Reflection principles and set theory of large cardinals)--------------------------48
    Department of Logic, History and Philosophy of Science, University of Barcelona   Garcia-Avila,Luz Maria
 
7. CANJAR FILTERS II : PROOFS OF $\mathfrak{b}<\mathfrak{s}$ AND $\mathfrak{b}<\mathfrak{a}$ REVISITED (Reflection principles and set theory of large cardinals)---59
    CENTRO DE CIENCAS MATEMATICAS, UNAM / CENTRO DE CIENCAS MATEMATICAS, UNAM / CENTRO DE CIENCAS MATEMATICAS, UNAM   GUZMAN,OSVALDO / HRUSAK,MICHAEL / MARTINEZ-CELIS,ARTURO
 
8. Preservation properties for iterations with finite support (Reflection principles and set theory of large cardinals)-------------68
    神戸大学システム情報学研究科   Mejia,Diego A.
 
9. Matrices of isomorphic models and morass-like structures (Reflection principles and set theory of large cardinals)---------------79
    南山大学数学   宮元 忠敏 (MIYAMOTO,Tadatoshi)
 
10. THE APPROXIMATION PROPERTY AND THE CHAIN CONDITION (Reflection principles and set theory of large cardinals)-------------------103
    神戸大学自然科学系先端融合研究環   薄葉 季路 (Usuba,Toshimichi)