* このページに掲載している原稿は 速報ファイル です。
* These papers are "unissued version".
RIMS Kôkyûroku
No.2120
副有限モノドロミー,ガロア表現,および複素関数
Profinite monodromy, Galois representations, and Complex functions
RIMS 共同研究(公開型)
 
2018/05/21〜2018/05/23
金子 昌信
Masanobu Kaneko
 
目 次
 
1. FROM THE DELIGNE-IHARA CONJECTURE TO MULTIPLE MODULAR VALUES (Profinite monodromy, Galois representations, and Complex functions)---
    All Souls College, Oxford     (BROWN,FRANCIS)
 
2. A MULTI-VARIABLE VERSION OF THE COMPLETED RIEMANN ZETA FUNCTION AND OTHER $L$-FUNCTIONS (Profinite monodromy, Galois representations, and Complex functions)---
    All Souls College, Oxford   BROWN,FRANCIS
 
3. THE $p$-ADIC UNIFORMISATION OF MODULAR CURVES BY $p$-ARITHMETIC GROUPS (Profinite monodromy, Galois representations, and Complex functions)---
    Department of Mathematics, McGill University   DARMON,HENRI
 
4. IHARA LIFTS AND CONJECTURAL CORRESPONDENCES BETWEEN SYMPLECTIC AUTOMORPHIC FORMS OF GENUS TWO (Profinite monodromy, Galois representations, and Complex functions)---
    大阪大学   伊吹山 知義 (IBUKIYAMA,TOMOYOSHI )
 
5. On ($\infty$×p)-adic uniformization of curves mod p with assigned many rational points (Profinite monodromy, Galois representations, and Complex functions)---
    京都大学   伊原 康隆 (lhara,Yasutaka )
 
6. ON THE THEORY OF $M$-FUNCTIONS (Profinite monodromy, Galois representations, and Complex functions)--------------------------------
    名古屋大学   松本 耕二 (MATSUMOTO,KOHJI )
 
7. The Grothendieck-Teichmuller group as an open subgroup of the outer automorphism group of the etale fundamental group of a configuration space (Profinite monodromy, Galois representations, and Complex functions)---
    京都大学数理解析研究所   南出 新 (Minamide,Arata )
 
8. Arithmetic topology in Ihara theory: Milnor invariants, Heisenberg coverings and triple power residue symbols (Profinite monodromy, Galois representations, and Complex functions)---
    九州大学   森下 昌紀 (Morishita,Masanori )
 
9. Arithmetic and Combinatorics in Galois fundamental groups (Profinite monodromy, Galois representations, and Complex functions)-----
    大阪大学   中村 博昭 (NAKAMURA,HIROAKI )
 
10. The Ihara Zeta function and Quantum Walk (Profinite monodromy, Galois representations, and Complex functions)---------------------
    小山工業高専   佐藤 巌 (Sato,lwao )
 
11. Soule characters in the work of Ihara (Profinite monodromy, Galois representations, and Complex functions)------------------------
    Department of Mathematics, University of California, Los Angeles   Sharifi,Romyar
 
12. ON STRONG SECOND MAIN THEOREM TYPE CONJECTURE IN HIGHER DIMENSIONAL NEVANLINNA THEORY (Profinite monodromy, Galois representations, and Complex functions)---
    大阪大学   山ノ井 克俊 (YAMANOI,KATSUTOSHI )