RIMS Kôkyûroku
No.1997
非線形現象の解析への応用としての発展方程式論の展開
Developments of the theory of evolution equations as the applications to the analysis for nonlinear phenomena
RIMS 研究集会報告集
 
2015/10/21〜2015/10/23
石井 克幸
Katsuyuki Ishii
 
目 次
 
1. Existence of weak solution for volume preserving mean curvature flow via phase field method (Developments of the theory of evolution equations as the applications to the analysis for nonlinear phenomena)---1
    東京大学大学院数理科学研究科   高棹 圭介 (Takasao,Keisuke)
 
2. Viscosity solutions for the level set formulation of the crystalline mean curvature flow (Developments of the theory of evolution equations as the applications to the analysis for nonlinear phenomena)---16
    金沢大学理工研究域   Pozar,Norbert
 
3. 非線形知覚関数を持つ走化性方程式系の解の挙動について (非線形現象の解析への応用としての発展方程式論の展開)------------------------32
    九州工業大学工学府   仙葉 隆 (Senba,Takasi)
 
4. An approach from the Yosida approximation to a quasilinear degenerate parabolic-elliptic chemotaxis system with growth term (Developments of the theory of evolution equations as the applications to the analysis for nonlinear phenomena)---40
    東京理科大学大学院理学研究科数学専攻   吉野 徳晃 (Yoshino,Noriaki)
 
5. Some topics in $L^{p}$-theory for second-order elliptic operators with unbounded coefficients (Developments of the theory of evolution equations as the applications to the analysis for nonlinear phenomena)---50
    東京理科大学理学部第一部数学科   側島 基宏 (Sobajima,Motohiro)
 
6. Mathematical analysis for a Warren-Kobayashi-Lobkovsky-Carter type system (Developments of the theory of evolution equations as the applications to the analysis for nonlinear phenomena)---64
    千葉大学教育学部 / サレジオ工業高等専門学校一般教育科 / 神奈川大学工学部   白川 健 / 渡邉 紘 / 山崎 教昭 (Shirakawa,Ken / Watanabe,Hiroshi / Yamazaki,Noriaki)
 
7. Spreading, vanishing and singularity for radially symmetric solutions of a Stefan-type free boundary problem (Developments of the theory of evolution equations as the applications to the analysis for nonlinear phenomena)---86
    早稲田大学大学院基幹理工学研究科 / 早稲田大学理工学術院   兼子 裕大 / 山田 義雄 (Kaneko,Yuki / Yamada,Yoshio)
 
8. Periodic solutions of double-diffusive convection system in the whole space (Developments of the theory of evolution equations as the applications to the analysis for nonlinear phenomena)---96
    早稲田大学先進理工学研究科   内田 俊 (Uchida,Shun)
 
9. Optimization with Allen-Cahn variational inequalities (Developments of the theory of evolution equations as the applications to the analysis for nonlinear phenomena)---119
    WEIERSTRASS INSTITUTE FOR APPLIED ANALYSIS AND STOCHASTICS   Farshbaf-Shaker,M. Hassan
 
10. A two-scale model for concrete carbonation process in a three dimensional domain (Developments of the theory of evolution equations as the applications to the analysis for nonlinear phenomena)---133
    日本女子大学理学部 / 名城大学理工学部 / 長岡工業高等専門学校一般教育科 / 苫小牧工業高等専門学校総合学科   愛木 豊彦 / 村瀬 勇介 / 佐藤 直紀 / 熊崎 耕太 (Aiki,Toyohiko / Murase,Yusuke / Sato,Naoki / Kumazaki,Kota)
 
11. Asymptotic profiles of solutions to the semilinear wave equation with time-dependent damping (Developments of the theory of evolution equations as the applications to the analysis for nonlinear phenomena)---140
    名古屋大学大学院多元数理科学研究科   若杉 勇太 (Wakasugi,Yuta)
 
12. Remarks on the structure-preserving finite difference scheme for the Falk model of shape memory alloys (Developments of the theory of evolution equations as the applications to the analysis for nonlinear phenomena)---156
    愛媛大学理工学研究科   吉川 周二 (Yoshikawa,Shuji)