No.1471
‹­§–@‚Æ–³ŒÀ‘g‡‚¹˜_
Forcing and Infinitary Combinatorics
RIMS Œ¤‹†W‰ï•ñW
@
2005/10/12`2005/10/14
‰–’J@^O
Masahiro@Shioya
@
–ځ@ŽŸ
@
1. A counterpart of strong normality(Forcing and Infinitary Combinatorics)-----------------------------------------------------------1
@@@@_“ސì‘åŠwHŠw•”@@@ˆ¢•” ‹gO@(Abe, Yoshihiro)
@
2. Distributivity numbers of $\mathcal{P}(\omega)$ / fin and its friends(Forcing and Infinitary Combinatorics)-----------------------9
@@@@The Graduate School of Science and Technology, Kobe University@@@Brendle, Jorg
@
3. $^\kappa\kappa$ in light of the Tukey ordering(Forcing and Infinitary Combinatorics)---------------------------------------------19
@@@@’†•”‘åŠwHŠw•”—Šw‹³Žº / ‘ˆî“c‘åŠw‘åŠw‰@—HŠwŒ¤‹†‰È / –¼ŒÃ‰®‘åŠw‘åŠw‰@lŠÔî•ñŠwŒ¤‹†‰È@@@Ÿº–ì ¹ / •¿ŒË ³”V / Žðˆä ‘ñŽj [‘¼]@(Fuchino, Sakae / Karato, Masayuki / Sakai, Hiroshi)
@
4. A Strong Form of $\psi_\mathrm{AC}$(Forcing and Infinitary Combinatorics)--------------------------------------------------------35
@@@@“ìŽR‘åŠw”—î•ñŠw•”@@@‹{Œ³ ’‰•q@(MIYAMOTO, Tadatoshi)
@
5. The covering number and the uniformity of the ideal $\mathcal{I}_f$(Forcing and Infinitary Combinatorics)------------------------45
@@@@‘åã•{—§‘åŠw—ŠwŒnŒ¤‹†‰È@@@‘å{‰ê ¸@(Osuga, Noboru)
@
6. SOME APPLICATIONS OF STATIONARY REFLECTION IN $\mathcal{P}_\kappa \lambda$-------------------------------------------------------54
@@@@’}”g‘åŠw”ŠwŒn@@@‰–’J ^O@(SHIOYA, MASAHIRO)
@
7. The partition property of $\mathcal{P}_\kappa \lambda$(Forcing and Infinitary Combinatorics)-------------------------------------74
@@@@–¼ŒÃ‰®‘åŠw‘åŠw‰@î•ñ‰ÈŠwŒ¤‹†‰È@@@”–—t ‹G˜H@(Usuba, Toshimichi)
@
8. $\mathbb{P}_{max}^{\mathfrak{d=\aleph_1}}$ and other variations (Forcing and Infinitary Combinatorics)---------------------------87
@@@@_ŒË‘åŠwHŠw•”î•ñ’m”\HŠw‰È@@@ˆË‰ª ‹PK@(Yorioka, Teruyuki)
@