No.1640
”ñüŒ`”­“W•û’öŽ®‚ÆŒ»Û‚̐”—
Nonlinear Evolution Equations and Mathematical Modeling
RIMS Œ¤‹†W‰ï•ñW
@
2008/11/17`2008/11/19
ŽR“c@‹`—Y
Yoshio Yamada
@
–ځ@ŽŸ
@
1. 1ŽŸ‘‘å“x‚ðŽ‚ÂƒGƒlƒ‹ƒM[‚ÉŠî‚­2ŽŸŒ³‘Š“]ˆÚƒ‚ƒfƒ‹‚É‚¨‚¯‚éˆÀ’萫‰ðÍ (”ñüŒ`”­“W•û’öŽ®‚ÆŒ»Û‚̐”—)-------------------------------1
@@@@_ŒË‘åŠwHŠwŒ¤‹†‰È‰ž—p”Šw‹³Žº@@@”’ì Œ’@(Shirakawa,Ken)
@
2. On the existence of shock curves in 2~2 hyperbolic systems of conservation laws (Nonlinear Evolution Equations and Mathematical Modeling)---23
@@@@‘ˆî“c‘åŠw‹³ˆçŠwŒ¤‹†‰È / ‰F’ˆq‹óŒ¤‹†ŠJ”­‹@\@@@œä˜a GŽ÷ / ŠÝ ‹±Žq@(Ohwa,Hiroki / Kishi,Kyoko)
@
3. Local existence of solutions for a model related to the motion of a slime mould (Nonlinear Evolution Equations and Mathematical Modeling)---47
@@@@“Œ–k‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È@@@•¨•” Ž¡“¿@(Monobe,Harunori)
@
4. Doubly nonlinear evolution equations and dynamical systems (Nonlinear Evolution Equations and Mathematical Modeling)-------------56
@@@@ŽÅ‰YH‹Æ‘åŠwƒVƒXƒeƒ€HŠw•”@@@Ô–Ø „˜N@(Akagi,Goro)
@
5. Abstract approach to the Dirac equation (Nonlinear Evolution Equations and Mathematical Modeling)--------------------------------67
@@@@“Œ‹ž—‰È‘åŠw—Šw•” / “Œ‹ž—‰È‘åŠw—ŠwŒ¤‹†‰È@@@‰ª‘ò “o / ‹gˆä Œ’‘¾˜Y@(Okazawa,Noboru / Yoshii,Kentarou)
@
6. Coincidence sets in quasilinear problems of logistic type (Nonlinear Evolution Equations and Mathematical Modeling)--------------85
@@@@HŠw‰@‘åŠwHŠw•”@@@’|“à TŒá@(Takeuchi,Shingo)
@
7. Global solvability of the Navier-Stokes equations in a rotating frame with spatially almost periodic data (Nonlinear Evolution Equations and Mathematical Modeling)---104
@@@@“Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È@@@•Ä“c „@(Yoneda,Tsuyoshi)
@
8. Global Solutions with a Moving Singularity for a Semilinear Parabolic Equation (Nonlinear Evolution Equations and Mathematical Modeling)---116
@@@@“Œ–k‘åŠw—ŠwŒ¤‹†‰È@@@²“¡ ãđå@(Sato,Shota)
@
9. Bifurcation structure of steady-states for an adsorbate-induced phase transition model (Nonlinear Evolution Equations and Mathematical Modeling)---129
@@@@•Ÿ‰ªH‹Æ‘åŠwHŠw•”@@@‹v“¡ t‰î@(Kuto,Kousuke)
@
10. Unique existence of $BV$-entropy solutions for strongly degenerate convective diffusion equations (Nonlinear Evolution Equations and Mathematical Modeling)---144
@@@@’†‰›‘åŠw—HŠw•” / ’†‰›‘åŠw—HŠwŒ¤‹†‰È@@@‘åt œÄ”V• / “nç³ h@(OHARU,SHINNOSUKE / WATANABE,HIROSHI)
@
11. On instant blow-up for quasilinear parabolic equations with growing initial data (Nonlinear Evolution Equations and Mathematical Modeling)---164
@@@@“Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È@@@”~“c “TW@(Umeda,Noriaki)
@
12. ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR BCF MODEL DESCRIBING CRYSTAL SURFACE GROWTH (Nonlinear Evolution Equations and Mathematical Modeling)---172
@@@@‘åã‘åŠwHŠwŒ¤‹†‰È / ‘åã‘åŠwî•ñ‰ÈŠwŒ¤‹†‰È@@@“¡‘º ‰p–¾ / ”ª–Ø ŒúŽu@(FUJIMURA,HIDEAKI / YAGI,ATSUSHI)
@