No.1686
ณภWใฬgน_ฦญง@_
Combinatorial set theory and forcing theory
RIMS คW๏๑W
@
2009/11/16`2009/11/19
หช@PK
Teruyuki Yorioka
@
ฺ@
@
1. Meagre Subsets of $^\omega[0,1]$ and $\mathcal{B}(l^2)$ (Combinatorial set theory and forcing theory)-----------------------------1
@@@@_หๅwHwคศ@@@Bice,Tristan
@
@@@@_หๅwHwคศ /@@@uh [O /@(Brendle,Jorg / Larson,Paul B.)
@
@@@@DEPARTMENT OF MATHEMATICS, YORK UNIVERSITYEMATEMATICKI INSTITUTEFIELDS INSTITUTE@@@FARAH,ILIJAS
@
4. Forcing, Combinatorics and Definability (Combinatorial set theory and forcing theory)--------------------------------------------24
@@@@Kurt Godel Research Center, University of Vienna@@@Friedman,Sy-David
@
@@@@_หๅwๅw@Hwคศ@@@บ์ น@(Fuchino,Sakae)
@
6. Coanalytic sets with Borel sections (Combinatorial set theory and forcing theory)------------------------------------------------59
@@@@คQๅwHwคศ@@@กc i@(Fujita,Hiroshi)
@