No.862
流体とプラズマの諸現象の数学解析
Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics
 
1993/10/18〜1993/10/20
鵜飼 正二, 谷 温之, 浅野 潔
Seiji Ukai, Atusi Tani, Kiyoshi Asano
 
目 次
 
1. 流れの中での保存則について(流体とプラズマの諸現象の数学解析)----------------------------------------------------------------------1
    奈良女子大学理学部   宮武 貞夫 (Miyatake, Sadao)
 
2. Spherically symmetric solutions to the compressible Euler equation with an external force(Mathematical Analyasis of Phenomena in Fluid and Plasma Dynamics)---10
    Department of Information Sciences, Tokyo Institute of Technology   溝畑 潔 (Mizohata, Kiyoshi)
 
3. Rarefaction waves in discrete kinetic theory(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)--------------------21
    九州大学工学部   川島 秀一 (KAWASHIMA, SHUICHI)
 
4. The Null Gauge Condition and the One Dimensional Nonlinear Schrodinger Equation with Cubic Nonlinearity(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)---29
    東京大学数理科学研究科   堤 誉志雄 (TSUTSUMI, YOSHIO)
 
5. Asymptotic Behavior of the Solutions to a One-Dimensional Motion of Compressible Viscous Fluids II(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)---35
    愛媛大学理学部   柳 重則 (Yanagi, Shigenori)
 
6. ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR THE DISCRETE BOLTZMANN EQUATION WITH LINEAR AND QUADRATIC TERMS(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)---46
    Dept. Mathematical Science, Univ. Tokyo   山崎 満 (YAMAZAKI, MITSURU)
 
7. ブシネスク方程式の定常解の安定性について(流体とプラズマの諸現象の数学解析)-------------------------------------------------------56
    九州大学工学部   隠居 良行 (Kagei, Yoshiyuki)
 
8. On stability of exterior stationary Navier-Stokes flows(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)---------68
    Department of Applied Science, Faculty of Engineering, Kyushu University   宮川 徹朗 (MIYAKAWA, Tetsuro)
 
9. Asymptotic Stability og Traveling Waves with shock profile for Non-convex Viscous Scalar Conservation Laws(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)---74
    Department of Mathematics, Osaka University / School of Political Sceicne and Economics, Waseda University   松村 昭孝 / 西原 健二 (Matsumura, Akitaka / Nishihara, Kenji)
 
10. Smooth global solutions of the two dimensional Burgers equations(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)---85
    Department of Applied Science, Faculty of Engineering, Kyushu University   伊藤 一男 (Ito, Kazuo)
 
11. A Vortex Method Induced from Two-Dimensional Navier-Stokes Equations(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)---93
    Dept. Energy Systems Engr, University of Osaka Prefecture / Dept. Energy Systems Engr, University of Osaka Prefecture   木田 輝彦 / 中嶋 智也 (Kida, T. / Nakajima, T.)
 
12. NAVIER-STOKES EQUATIONS WITH DISTRIBUTIONS AS INITIAL DATA(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)----105
    Department of Applied Physics, Nagoya University / Department of Mathematics, Hitotsubashi University   小薗 英雄 / 山崎 昌男 (KOZONO, HIDEO / YAMAZAKI, MASAO)
 
13. Two-phase free boundary problem for viscous imcompressible thermo-capillary convection(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)---111
    Department of Mathematics, Waseda University   田中 尚人 (Tanaka, Naoto)
 
14. THE POINT SPECTRUM OF THE LINEARIZED BOLTZMANN OPERATOR WITH AN EXTERNAL-FORCE POTENTIAL IN AN UNBOUNDED DOMAIN(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)---118
    神戸大学工学部   田畑 稔 (Tabata, Minoru)
 
15. Fluid dynamical limit of the Boltzmann equation I(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)-------------129
    Institute of Mathematics, Yoshida College, Kyoto University   浅野 潔 (Asano, Kiyoshi)
 
16. INCOMPRESSIBLE FLUIDS ON THREE LIVELS: HYDRODYNAMIC, KINETIC, MICROSCOPIC.(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)---146
    Dipartimento di Matematica, Universita di Roma Tor Vergata / Dipartimento di Fisica, Universita di Roma Tor Vergata   ESPOSITO, R. / MARRA, R.
 
17. On damped or strongly damped hyperbolic system(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)----------------171
    Mathematical Institute (Kawauchi) Faculty of Science, Tohoku University / Department of Mathematics, Faculty of Liberal Arts, Shizuoka University   長澤 壯之 / 立川 篤 (NAGASAWA, TAKEYUKI / TACHIKAWA, ATSUSHI)
 
18. On a Local Energy Decay of Solutions of a Dissipative Wave Equation(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)---181
    筑波大学数学系 / 筑波大学数学系   柴田 良弘 / 檀 和日子 (Shibata, Yoshihiro / Dan, Wakako)
 
19. Notes on the periodic solutions of the 2-dimensional heat convection equations(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)---191
    日本女子大学理学部   大枝 一男 (OEDA, Kazuo)
 
20. Numerical examination of applicability of the linearized Boltzmann equation(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)---202
    京都大学工学部 / 京都大学工学部 / 京都大学工学部   曾根 良夫 / 片岡 武 / 大和田 拓[他] (Sone, Yoshio / Kataoka, Takeshi / Ohwada, Taku)
 
21. The Gradient Theory of the Phase Transitions in Cahn-Hilliard Fluids with the Dirichlet boundary conditions(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)---219
    Department of Mathematics, Faculty of Science Tokyo Institue of Technology   石毛 和弘 (ISHIGE, KAZUHIRO)
 
22. 非定常Navier-Stokes方程式の外部領域での減衰について(流体とプラズマの諸現象の数学解析)------------------------------------------231
    東京電機大学理工学部   高橋 秀慈 (Takahashi, Shuji)
 
23. Free Boundary Problems for the Incompressible Euler Equations(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)---237
    Department of Mathematics, Keio University   谷 温之 (TANI, Atusi)